
Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
AG Programmiersprachen und -werkzeuge

A Scalable Representation of Java Bytecode
Models

MOTIVATION
Java bytecode is a very versatile intermediate representation to which several
languages (Java, Scala, Groovy, etc.) are compiled. For all available libraries,
even if they are closed-source, the bytecode is always present, which is why
many code analysis tools today process Java bytecode. The programming lan-
guages and tools group is developing a toolkit for program analyses and transfor-
mations of Java bytecode. The toolkit is named Modular Bytecode Engineering
and Analysis based on Models, or ModBEAM for short. It contains a metamodel
of Java bytecode defined in the ECORE format of the “Eclipse Modeling Frame-
work” (EMF) which is the prevalent standard in model-driven engineering (MDE).
ModBEAM also provides and Eclipse plug-in which can represent Java bytecode
files as models according to its metamodel. This allows the usage of a wide vari-
ety of model analysis and transformation tools, available in the EMF ecosystem,
to inspect and possibly modify the bytecode model; this facilitates developing
modular and powerful bytecode-based tools. Afterwards, ModBEAM can again
generate regular Java bytecode from the model, such that the possibly modified
bytecode can be executed.

ASSIGNMENT
EMF provides a standard representation for models, which is also available for
ModBEAM models, based on a tree-structure. However, models in general and
bytecodemodels in specific rather have a graph structure than a tree. In particular
the bytecodemodels of ModBEAM contain the control-flow graph formed by the
instructions in the bytecode. All in all, the standard visualization is not very easy to
read and also not very scalable: each instruction in the bytecode corresponds to
at least two model objects and therefore requires at least two lines in the default
tree view.
In this project, a new visualization should be developed that (ideally) combines a
compact textual representation for blocks of sequentially executed instructions
and a graphical representation of the control flow. For other entities like classes,
methods and fields also an appropriate visualization should be developed.
Within the EMF ecosystem, there are several frameworks available for generating
custom visualizations of models. Most prominent are xText for textual represen-
tations or GEF and GMP for graphical representations. The main purpose of this
visualization is to quickly generate images of ModBEAM models for illustration.
Therefore, it should also be possible to manually edit the layout of the generated
(graphical) representation. Being able to edit the model through representation
is only an optional requirement.

FURTHER READING
• Christoph Bockisch, Gabriele Taentzer, Nebras Nassar, and Lukas Wydra.
Java bytecode verification with ocl why, how and when? Journal of Object
Technology, 19(3):3:1–16, October 2020. Special Issue dedicated to Martin
Gogolla on his 65th Birthday. doi:10.5381/jot.2020.19.3.a13

• Bugra M. Yildiz, Christoph Bockisch, Arend Rensink, and Mehmet Aksit. An
mde approach for modular program analyses. In Companion Proceedings of
the 1st International Conference on the Art, Science, and Engineering of Pro-
gramming, Programming ’17, New York, NY, USA, 2017. Association for Com-

INFO

Bytecode, MDE

Java, EMF

Bachelor or Master
Thesis

Theory
Practice

CONTACT
Prof. Dr. Christoph Bockisch

bockisch@
mathematik.
uni-marburg.de

https://doi.org/10.5381/jot.2020.19.3.a13
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
mailto: bockisch@mathematik.uni-marburg.de?subject=Anfrage%20Thesis%20Bytecode-constraints


puting Machinery. doi:10.1145/3079368.3079392

• Homepage of the Xtext project. https://eclipse.dev/Xtext/. Accessed:
2023-10-26

• Homepage of the Graphical Editing Framework (GEF) project. https:
//projects.eclipse.org/projects/tools.gef. Accessed: 2023-10-26

• Homepage of theGraphicalModeling Project (GMP). https://eclipse.dev/
modeling/gmp/. Accessed: 2023-10-26

https://doi.org/10.1145/3079368.3079392
https://eclipse.dev/Xtext/
https://projects.eclipse.org/projects/tools.gef
https://projects.eclipse.org/projects/tools.gef
https://eclipse.dev/modeling/gmp/
https://eclipse.dev/modeling/gmp/

