
Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
AG Programmiersprachen und -werkzeuge

Classification and Recognition of Mutations in
Code

MOTIVATION
Mutation-Testing (MT) is a technique to assess the strength of a test suite for ap-
plication code in a software project. Assuming that the test suite is satisfied in the
beginning, the MT tool mutates the application code, i.e, makes a small change
like replacing a plus with a minus (which is called a mutation operator), and runs
the test suite again; this is repeated for a large number ofmutations. Since themu-
tation has changed the application’s behavior, each change should be detected
in terms of at least one failing test. If this is not the case, this is a sign that the
test suite is not strong enough and therefore would also miss actual mistakes in
the program. Several MT tools exist, primarily in research, which follow different
approaches for implementing mutation operators, making it difficult to compare
these tools. In most cases, the tools themselves report which mutation operators
have been applied in a specific run, but due to different design philosophies in
these tools, the reports are not directly comparable. For example, one tool may
report that is has replaced one arithmetic operator with another, while a different
tool may report to have replaced + with -, + with *, + with /, and so on. Also the
tools have different ways of reporting the location at which the mutation operator
has been applied. Lastly, some of the tools mutate (Java) source code while oth-
ers mutate at the (Java) bytecode level, which also makes a comparison difficult.

ASSIGNMENT
In this assignment, actual mutants generated by MT tools should be inspected
and the changes identified. For this purpose, a large inventory of mutants can
be provided that have been generated by multiple mutation-testing tools. This
includes the original code of several software projects and the code of the gen-
eratedmutants. In all cases, the code is provided as Java bytecode, which ismore
general since it can easily be derived frommutated source code. To compare the
original code and the mutant, our Java-bytecode metamodel ModBEAM should
be used. This provides a fully automated way of creating an EMF-based model
from Java bytecode. When the models of both code versions are available, they
can be compared with the standard tool EMF Compare to identify the changes
between both versions. This comparison should be performed on a large num-
ber of the mutants in the inventory and a classification of the identified changes
should be derived. The goal is to provide an MT-tool-independent way of label-
ing the applied mutation operators and the location to which mutation operators
are applied.

FURTHER READING
• Bugra M. Yildiz, Christoph Bockisch, Arend Rensink, and Mehmet Aksit. An
mde approach for modular program analyses. In Companion Proceedings of
Programming’ 17. ACM, 2017. doi:10.1145/3079368.3079392

• Christoph Bockisch, Daniel Neufeld, and Gabriele Taentzer. MMT: Mutation
testing of java bytecodewithmodel transformation. In ProceedingsMODELS
’23: Companion Proceedings. ACM. https://uni-marburg.de/6zkY40

• Homepage of the EMF Compare project. https://projects.eclipse.org/
projects/modeling.emfcompare. Accessed: 2023-11-16

INFO

Bytecode,
Mutation-Testing

Java, EMF

Bachelor or Master
Thesis

Theory
Practice

CONTACT
Prof. Dr. Christoph Bockisch

bockisch@
mathematik.
uni-marburg.de

https://doi.org/10.1145/3079368.3079392
https://uni-marburg.de/6zkY40
https://projects.eclipse.org/projects/modeling.emfcompare
https://projects.eclipse.org/projects/modeling.emfcompare
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
mailto: bockisch@mathematik.uni-marburg.de?subject=Anfrage%20Thesis%20Bytecode-comparison

