5th of June, 11am - 6pm, “Tischlein deck dich”

Generating molecular microscope (AG Volz)

Polaritons in twisted short text and a nice foto

Department News

If you have difficulties reading the newsletter, you can download it by clicking the

Saleh Firoozabadi,

modern electron

30 Jun, 5.15 pm

23 Jun, 5.15 pm

at the Camera

Big lecture hall

24th of June

White-light

(AG Witte)

interaction of electrical and optical eects. Based on

way to achieve eiciencies beyond the fundamental

order to realize the necessary rapid expansion of

Photovoltaic solar energy conversion – Great

operation for astronomical research until the 1930s.

On October 12, 1841, Christian Ludwig Gerling looked up

models to understand the properties of these materials

in the field of optoelectronics (e.g. light emitting, light

transparent, excellent conductors of electricity and

unique properties, such as being bendable, largely

and monolayers of transition metal dichalcogenides.

Materials with tailored properties for technological

and technological application potential

present recent work in our group investigating

fabricated with atomic-scale precision via the

Laboratory-scale electronic devices can now be

structures and processes on semiconductor surfaces

Dr. Stefan Kachel (FB 13 | Physics)

techniques will be discussed.

the ab initio theory of semiconductor/organic interfaces.

reactions of organic molecules on dierent surfaces, or

time-resolved photoemission orbital tomography,

Szymon Godlewski from the Jagellonian Unversity

this symposium include the invited lecture by Dr. habil.

representent at this event - you can find us at the table

the important role of temperature, as well as micro- and

photoexcited species and non-radiative processes.

light emitters. However, their photophysical properties

Prof. Dr. Marina Gerhard

spare time, I already enjoyed to explore the

physics of perovskite photovoltaic devices. In my

Systems ISE in Freiburg, where I also carried out

Dr. Felix Widdascheck, who has worked in the group of

Transmittion Electron Microscopy, Marburg). ATEMMA

materials. The project is called ATEMMA (Advanced

Work on the next generation of single-photon detectors

and (ii) an inner, buried interface dipole between the

HOMO, resp. LUMO pinning eect can be avoided by

Gregor Witte and his group demonstrated that this

energetic levels in the isolated states, this can be

characterized by moiré excitons. Their hybridization

Twisted atomically thin semiconductors are

the entrance gate of the Renthof and will be also

heterostructures aiming for single-photon detectors.

dislocations and morphology of vertical

1083. Morever, I was involved in the uSPIRE project

image simulations. I used a combination of dierent

ingredient ratio. Jan Ornik and Lara Heidrich from AG

pharmaceutical research.

absorbed by the human body. Increasing solubility is

crystallinity of active pharmaceutical ingredients.

Since THz radiation interacts with crystal vibrations,

and (ii) an inner, buried interface dipole between the

HOMO, resp. LUMO pinning eect can be avoided by

Gregor Witte and his group demonstrated that this

energetic levels in the isolated states, this can be

characterized by moiré excitons. Their hybridization

Twisted atomically thin semiconductors are

the entrance gate of the Renthof and will be also

heterostructures aiming for single-photon detectors.

dislocations and morphology of vertical

1083. Morever, I was involved in the uSPIRE project

image simulations. I used a combination of dierent

ingredient ratio. Jan Ornik and Lara Heidrich from AG

pharmaceutical research.

absorbed by the human body. Increasing solubility is

crystallinity of active pharmaceutical ingredients.

Since THz radiation interacts with crystal vibrations,