Main Content

Multinary Intermetalloid Clusters

Reactions of binary Zintl anions of groups 13/15, 13/14, or 14/15 with transition metal complexes offer an elegant access to compounds with binary or ternary intermetalloid cluster anions of the general formula [(LnM)xTyEz]q– (L: organic ligand; M: transition metal; T: triel or tetrel atom; E = tetrel or pentel atom). These clusters are usually built from a (homo- or heteroatomic) shell of main group element atoms, which enclose one (or several) transition metal atom(s); in some cases though, the transition metal atoms or transition metal complex fragments are part of the shell (Figure 1). Our investigations are focussed on the controlled access by challenging syntheses, explanation of the formation mechanisms, understanding of the complex structures and bonding situations, as well as the reactivity of these unusual nanoscale metal particles. For this, we use a plethora of different characterization methods as well as comprehensive quantum chemical studies.

Here, you see the molecular structure of [U@Bi12]3–.
Photo: Bastian Weinert
Here, you see selected molecular orbitals and corresponding energy levels of [U@Bi12]3–.
Photo: Stefanie Dehnen

Figure 1: Molecular structure of the binary intermetalloid cluster anion [U@Bi12]3 (left) and frontier molecular orbitals of the calculated molecule in comparison with those of a hypothetical main group ligand, according to density functional theory (DFT) calculations (right). 

Here, you see the molecular structure of [(Rucod)Tl2Bi6]2-
Photo: Bastian Weinert
Here, you see the molecular structure of [Bi9(Rucod)2]3-.
Photo: Bastian Weinert

Figure 2: Molecular structures of the cluster anions [Tl2Bi6{Ru(cod)}]2– (left) and [Bi9{Ru(cod)}2]3– (right).

Here, you see the molecular structure of [Co@Sn6Sb6]3−.
Photo: Bastian Weinert
Here, you see the molecular structure of [Cu2Sn10Sb6]4-.
Photo: Bastian Weinert
Here, you see the molecular structure of (Ge4Bi14)4−.
Photo: Bastian Weinert

Figure 3: Molecular structure of the cluster anions [Co@Sn6Sb6]3− (left), {[CuSn5Sb3]2–}2 (top right) and (Ge4Bi14)4– (bottom right).

see e.g.: a) R. J. Wilson, F. Hastreiter, K. Reiter, P. Büschelberger, R. Wolf, R. Gschwind, F. Weigend, S. Dehnen, Angew. Chem. 2018, 130, 15585–15589. DOI; Angew. Chem. Int. Ed. 2018, 57, 15359–15363. DOI; Highlight: www.chemie.de, "ChemieXtra" 12/2018; b) N. Lichtenberger, Y. Franzke, W. Massa, F. Weigend, S. Dehnen, Chem. Eur. J. 2018, 24, 12022-12030. DOI; c) S. Mitzinger, J. Bandemehr, K. Reiter, S. J. McIndoe, X. Xie, F. Weigend, J. F. Corrigan, S. Dehnen, Chem. Commun. 2018, 54, 1421–1424. DOI; d) B. Weinert, S. Mitzinger, S. Dehnen, Chem. Eur. J. 2018, 24, 8470–8490. DOI; e) N. Lichtenberger, N. Spang, A. Eichhöfer, S. Dehnen, Angew. Chem. 2017, 129, 13436–13442. DOI; Angew. Chem. Int. Ed. 2017, 56, 13253–13258. DOI; f) R.J. Wilson, S. Dehnen, Angew. Chem. 2017, 129, 3144–3149. DOI; Angew. Chem. Int. Ed. 2017, 56, 3098–3102. DOI; Highlights: Nachr. Chem. 2017, 65, 520. DOI; Nachr. Chem. 2018, 66, 242. DOI; g) B. Weinert, S. Dehnen, Struct. Bond. 2017, 174, 99–134. DOI; h) R.J. Wilson, L. Broeckaert, F. Spitzer, F. Weigend, S. Dehnen, Angew. Chem. 2016, 128, 11950–11955. DOI; Angew. Chem. Int. Ed. 2016, 55, 11775–11780. DOI; Highlight: Nachr. Chem. 2017, 65, 239. DOI; i) N. Lichtenberger, R.J. Wilson, A.R. Eulenstein, W. Massa, R. Clérac, F. Weigend, S. Dehnen, J. Am. Chem. Soc. 2016, 138, 9033–9036. DOI; Highlight: Nachr. Chem. 2017, 65, 247. DOI; j) S. Mitzinger, L. Broeckaert, W. Massa, F. Weigend, S. Dehnen, Nat. Commun. 2016, 7, 10480–10490. DOI; k) R. Ababei, W. Massa, B. Weinert, P. Pollak, X. Xie, R. Clérac, F. Weigend, S. Dehnen, Chem. Eur. J. 2015, 21, 386–394. DOI