Main Content

Non-Classical Chalcogenido Metalates

Multinary Chalcogenido Metalate Cluster Compounds

Reactions of ortho-chalcogenidotetrelate anions [TE4]4– (T: Ge, Sn; E: S, Se, Te) with (transition) metal ions Mn+ in either protic solvents ROH or ionic liquids [Cat][An] result in the formation of compounds with multinary cluster anions [MxTyEz]q–, which may even be watersoluble in case of moderate anionc charges. The resulting salts [Am(ROH)n][MxTyEz] (A: alkaline (earth) metal) or [Cat][MxTyEz] possess (photo-)catalytic potential and may be further derivatized. The cations A+ or [Cat]+ significantly infulence the structure of the anion, which is additionally controlled by the very reaction conditions and further additives, such as amines. Thus, many different inorganic structural motifs could be realized (Figure 1).

Here, you see a molecular structure of the so called zeoball.
Foto: Bastian Weinert
Here, you see the molecular Structure of [Cs@SnII4(GeIV4Se10)4]7−
Photo: Bastian Weinert

Figure 1: Molecular structures of [Ge36Sn24Se132]24– (left) and 0D‐{[Cs@SnII4(GeIV4Se10)4]7−} (right).

also see e.g.: a) S. Santner, A. Wolff, M. Ruck, S. Dehnen, Chem. Eur. J. 2018, 24, 11899–11903. DOI; b) S. Santner, S. Yogendra, J. J. Weigand, S. Dehnen, Chem. Eur. J. 2017, 23, 1999–2004. DOI; c) S. Santner, J. Heine, S. Dehnen, Angew. Chem. 2016, 128, 886–904. DOI; Angew. Chem. Int. Ed. 2016, 54, 876–893. DOI; d) S. Santner, S. Dehnen, Inorg. Chem. 2015, 54, 1188–1190. DOI; e) Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500. DOI; Highlight: Nachr. Chem. 2013, 61, 234. DOI

Chalcogenidometallates of the heavy main group elements

The product range of reactions of chalcogenidometallates and transition metal compounds is strongly dependent on the species used. From a series of reactions we develop efficient synthesis strategies for new multinary chalcogenidometallates with very unusual structures. These are investigated by us with regard to their chemical and physical properties (figure 2).
Das Produktspektrum der Reaktionen von Chalkogenidometallaten und Übergangsmetallverbindungen ist stark von den eingesetzten Spezies abhängig. Aus einer Serie von Reaktionen entwickeln wir effiziente Synthesestrategien für neue multinäre Chalkogenidometallate mit sehr ungewöhnlichen Strukturen. Diese untersuchen wir hinsichtlich ihrer chemischen und physikalischen Eigenschaften (Abbildung 2).

Here, you see the molecular structure of [Rh3(CN)2(PPh3)4(μ3-Se) 2(μ-PbSe)]3–.
Photo: Bastian Weinert
Here, you see the molecular structure of [Hg4Te8(Te2)4]8–.
Photo: Bastian Weinert

Figure 2: Molecular structure of [Rh3(CN)2(PPh3)43-Se)2(μ-PbSe)]3– anion (left) as well as molecular structure of the heavy metal porphyrinoid [Hg4Te8(Te2)4]8– and embedding of this into lamellarly constructed solid (right).

also see e.g.: a) C. Donsbach, K. Reiter, D. Sundholm, F. Weigend, S. Dehnen, Angew. Chem. 2018, 129, 8906–8910. DOI; Angew. Chem. Int. Ed. 2018, 57, 8770–8774. DOI; b) G. Thiele, Y. Franzke, F. Weigend, S. Dehnen, Angew. Chem. 2015, 127, 11437–11442. DOI; Angew. Chem. Int. Ed. 2015, 54, 11283–11288. DOI; Highlights:;; Nachr. Chem. 2016, 64, 226. DOI; c) G. Thiele, S. Lippert, F. Fahrnbauer, P. Bron, O. Oeckler, A. Rahimi-Iman, M. Koch, B. Roling, S. Dehnen, Chem. Mater. 2015, 27, 4114–4118. DOI; d) G. Thiele, T. Krüger, S. Dehnen, Angew. Chem. 2014, 126, 4787–4791. DOI; Angew. Chem. Int. Ed. 2014, 53, 4699–4703. DOI; Highlight: Nachr. Chem. 2015, 63, 233. DOI