Main Content

Organo-Functionalized Metal Chalcogenide Cages and Networks

Functionalized organotetrel chalcogenide compounds

In this project, we address main group (semi)metal chalcogenide complexes and clusters that are sourrounded by a functionalized organic shell. Both the inorganic core and the organic decoration can be extended by appropriate follow-up chemistry: (a) reactions with transition metal compounds to yield multinary metal chalcogenide clusters with functionalized ligand shell, or (b) derivatization of the organic substituents with molecules exhibiting complementary functionality (Figure 1). These reaction pathways and their combination afford multifunctional hybrid compounds. These are investigated regarding their chemical and physical characteristics - especially with regard to structures, magnetic and opto-electronic properties. It is particularly worth mentioning that some of the hybrid cluster compounds allow for highly directed whitelight generation (WLG) from commercially available IR laser diodes, hence without the need of pulsed lasers.

Here, you see the molecular structure of [(R2Sn)4S6]
Photo: Bastian Weinert
Here, you see the molecular structure of [(R3Sn)4Sn2S10].
Photo: Bastian Weinert

Here, you see the molecular stucture of [(R2SnIV)6SnIII2S 12].
Photo: Bastian Weinert
Here, you see a mössbauer spectrum of [(R2SnIV)6SnIII2S 12].
Photo: Bastian Weinert

Here, you see the molecular structure of [(StySn)4S6].
Photo: Bastian Weinert
Here, you see an illustration of the extrem non-linear optical behaviour of the white light emitter [(StySn)4S6] irradiated by a CW-IR laser diode.
Photo: Bastian Weinert und Stefanie Dehnen

Figure 1: Molecular structure of [(R2Sn)4S6] (top left) and the product of its derivatisation with phenylhydrazine to form the corresponding hydrazone [(R3Sn)4Sn2S10] (top right). Mixed valent compound [(R2SnIV)6SnIII2S 12] (center left) by light-induced transformation of [(R2Sn)4S6]. Corresponding 119Sn-Mössbauer spectrum; R2: CMe2CH2COMe, R3: CMe2CH2CMeNNH2 (center right). Structure of [(StySn)4S6] and illustration of the extreme non-linear optical behavior as whitelight emitter when excited by a CW IR laser diode (bottom).

see e.g.: a) K. Hanau, N. Rinn, M. Argentari, S. Dehnen, Chem. Eur. J. 2018, 24, 11711–11716. DOI; b) N. Rinn, L. Guggolz, J. Lange, S. Chatterjee, T. Block, R. Pöttgen, S. Dehnen, Chem. Eur. J. 2018, 24, 5840–5848. DOI; c) N. Rinn, L. Guggolz, K. Gries, K. Volz, J. Senker, S. Dehnen, Chem. Eur. J. 2017, 23, 15607–15611. DOI; d) N.W. Rosemann, J.P. Eußner, A. Beyer, S.W. Koch, K. Volz, S. Dehnen, S. Chatterjee, Science 2016, 352, 1301–1304. DOIHighlights (selection): Spektrum.de, ScienceShots, Informationsdienst Wissenschaft, Deutschlandfunk, ScienceCodex, Welt der Physik, Innovations-Report, EurekAlert, Scientific American, Sci-News, Sputniknews, Opli, 2Physics, Photonik, ScienceDaily, Phys.Org, Analytica-World, Facebook; e) N.W. Rosemann, J.P. Eußner, E. Dornsiepen, S. Chatterjee, S. Dehnen, J. Am. Chem. Soc. 2016, 138, 16224–16227. DOI; f) N. Rinn, J.P. Eußner, W. Kaschuba, X. Xie, S. Dehnen, Chem. Eur. J. 2016, 22, 3094–3104. DOI; g) E. Leusmann, F. Schneck, S. Dehnen, Organometallics 2015, 34, 3264–3271. DOI.

Coordination compounds of heavy main group elements with (bio-)organic ligands

We aim at the synthesis of chalcogenido tetrelate compounds with bio-organic functionality by following two different synthesis strategies: (a) formation of clusters from bio-organic functionalized precursor units, (b) post-synthetic attachment of bio-organic molecules to the ligand shell of pre-formed clusters, e.g. with the help of click-reactions. Biomolecules addressed in this project are amino acids and/or peptides.

Here, you see the molecular structure of [{(CMe2CH2CMe)N2C(O)CN(CMe2CH 2CMe)CH2Ph}2Sn4S5].
Photo: Bastian Weinert
Here, you see the mass spectrum of the functionalized defect heterocuban [(R2Sn)3S4]
Photo: Annikka Engel

Figure 2: Molecular structure of [R12Sn4S5] (left; R1 = (CMe2CH2CMe)N2C(O)CN(CMe2CH 2CMe)CH2Ph) and mass spectrum of [(R2Sn)3S4], indicating the presence of three dipeptid units at the cluster surface (right).

see e.g.: a) J.-P. Berndt, A. Engel, R. Hrdina, S. Dehnen, P. R. Schreiner, Organometallics 2019, 38, 329–335. DOI; b) N. Rinn, J.-P. Berndt, A. Kreher, R. Hrdina, M. Reinmuth, P. R. Schreiner, S. Dehnen, Organometallics 2016 35, 3215–3220. DOI; c) B.E.K. Barth, B.A. Tkachenko, J.P. Eußner, P.R. Schreiner, S. Dehnen, Organometallics 2014, 33, 1678–1688. DOI