

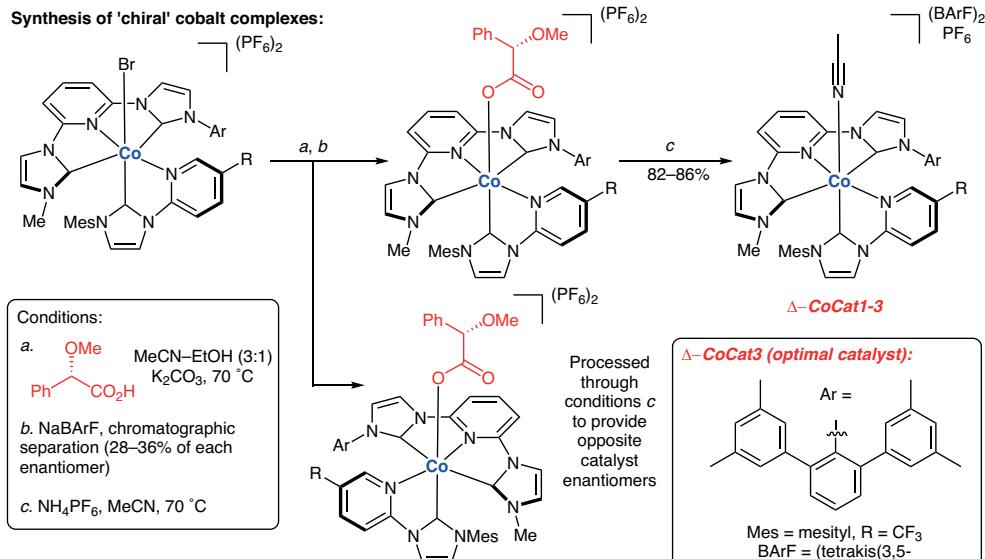
Complimentary and personal copy

www.thieme.com

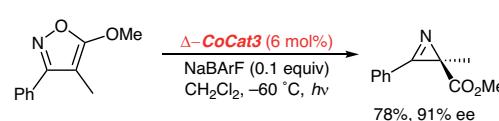
SYNFACTS
Highlights in
Chemical Synthesis

This electronic reprint is provided for non-commercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author's homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

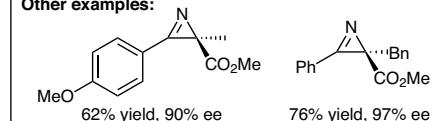
Publishing House and Copyright:


© 2025 by
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50
70469 Stuttgart
ISSN 1861-1958

Any further use
only by permission
of the Publishing House


 Thieme

‘Chiral at Metal’ Complex Mediates Asymmetric Formation of 2H-Azirines


Synthesis of ‘chiral’ cobalt complexes:

Enantioselective conversion of isoxazoles into chiral 2H-azirines:

Other examples:

Significance: Cobalt represents an attractive alternative to precious metals for the development of new catalytic reactions based on its abundant nature as well as the ability to access a range of oxidation states. Asymmetric homogeneous catalysis typically involves the utilization of chiral ligands such as diphosphines, N-heterocyclic carbenes to set the chiral environment around the metal. The current report describes the design and utilization of a series of cobalt complexes that comprise only achiral ligands though can mediate the enantioselective conversion of isoxazoles to 2H-azirines under photocatalyzed conditions owing to the stereogenic metal center.

Comment: The racemic complexes were synthesized through standard coordination chemistry starting from CoBr_2 with subsequent reaction with the tridentate and bidentate ligands. Resolution was achieved through chromatographic separation of the diastereomers derived from the reaction with (S)-methoxyphenylacetic acid. The final complexes were formed after reaction with acetonitrile and proved to be thermally stable though could be activated upon exposure to light through dissociation of the MeCN ligand revealing the reactive stereogenic Co(II) center. Key to the success of the enantioselective formation of the desired 2H-azirines was judicious selection of sterically bulky substituents on the pincer ligand, and mechanistic studies highlighted the importance of the BARF additive in promoting the photodissociation to form the active catalyst.