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Cancer development is driven by the combined activation of 
oncogenic signaling and the inactivation of tumor suppres-
sive pathways. Although chemical inhibitors of oncogenic 

signaling have entered current clinical practice, the complementary 
and technically more challenging approach of reactivating tumor 
suppressors is still in the beginning stages. The most commonly 
inactivated tumor suppressor is p53, and genetic mouse models  
have provided proof-of-concept evidence that tumors become 
addicted to p53 inactivation and respond to p53 restoration with 
tumor regression1–5. Approximately half of all cancer patients 
have a mutated TP53 gene, which encodes p53 (refs. 1–6). In the 
remainder of patients with a wild-type TP53 gene, p53’s activity is  
inhibited, for example, by the E3 ubiquitin ligase Mdm2, which 
binds it, inhibits its transcriptional activity and targets it for protea-
somal degradation1,7. Compounds that interfere with the p53-Mdm2  
interaction, release p53 from inhibition and thereby reactivate its 
tumor suppressor activity are considered promising for a broad 
spectrum of cancer therapies7.

X-ray crystallography revealed that Mdm2 has a deep hydro-
phobic cleft on which p53 binds with its N-terminal domain and 
provided the basis for the identification of nutlin as what is to our 
knowledge the first chemical compound to reactivate p53 by occu-
pying the p53-binding pocket on Mdm2 (refs. 8,9). Here, crystal 
structures of Mdm2 in complex with nutlin-3a, the active isomer 
of nutlin, guided the design of better nutlin-type inhibitors, some 
of which are currently being tested in ongoing clinical trials10. 
Underscoring the role of nutlin’s on-target activity for tumor therapy,  
cancer cell lines adapted to nutlin exhibit a high frequency of 
p53 gene mutations, unlike the majority of cells with acquired 
resistance to classical genotoxic compounds11. The correlation 
between nutlin sensitivity and p53 mutations was consistently the 
most significant (P < 1 × 10−36) drug-gene association identified 
in a large high-throughput screen comprising 639 human tumor 
cell lines and 130 drugs12. Nevertheless, there is also evidence for 

p53-independent effects of nutlin: for example, nutlin releases 
the p53 family member p73 and E2F1 from inhibition by Mdm2 
and reverses MDR1- and MRP1-induced drug resistance in an  
Mdm2-independent manner13,14.

In addition, cell-based screens for activators of the p53 path-
way were instrumental in identifying further inhibitors of the p53-
Mdm2 interface. For example, 2,5-bis(5-hydroxymethyl-2-thienyl)
furan (NSC652287), a known genotoxic compound15, was found to 
specifically kill parental (wild-type p53) HCT116 colorectal can-
cer cells but not a derivative subclone in which the p53 gene had 
been disrupted by homologous recombination16,17. This thiophene 
compound was therefore designated RITA for ‘reactivation of p53 
and induction of tumor cell apoptosis’16. In contrast to nutlin-type 
compounds, RITA was found to disrupt the p53-Mdm2 inter-
action by binding the N terminus of p53 (ref. 16). Thus, nutlin  
and RITA both interfere with the p53-Mdm2 interaction: one 
binds Mdm2, and the other binds p53. However, they affect cells 
in a remarkably different manner. Although nutlin induces cell 
cycle arrest in the majority of wild-type p53 cells18,19, RITA induces 
a strong apoptotic response16. This is in part explained by nutlin 
binding to Mdm2 and inhibiting Mdm2-dependent degradation of 
hnRNP K, a p53 cofactor required for p21-dependent G1 cell cycle 
arrest19. Thus, high levels of hnRNP K in cells treated with nutlin, 
but not RITA, favor p21-mediated cell cycle inhibition and pro-
tect nutlin-treated cells from killing19. Furthermore, the apoptotic 
response induced by RITA is dose dependent and is accompanied 
by transcriptional repression of anti-apoptotic proteins and ROS 
defense pathways, blocking of the Akt pathway and downregulation 
of key oncogenic signaling pathways20,21. In light of the proposed 
mode of action described above, it was rather unexpected that 
RITA was later also found to reactivate mutated p53 proteins, pos-
sibly by triggering a conformational change propagating from the  
N terminus to the rest of the protein, which promotes proper  
folding of mutant p53 (refs. 22–24).
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Inactivation of the p53 tumor suppressor by Mdm2 is one of the most frequent events in cancer, so compounds targeting the 
p53-Mdm2 interaction are promising for cancer therapy. Mechanisms conferring resistance to p53-reactivating compounds 
are largely unknown. Here we show using CRISPR-Cas9–based target validation in lung and colorectal cancer that the activ-
ity of nutlin, which blocks the p53-binding pocket of Mdm2, strictly depends on functional p53. In contrast, sensitivity to 
the drug RITA, which binds the Mdm2-interacting N terminus of p53, correlates with induction of DNA damage. Cells with 
primary or acquired RITA resistance display cross-resistance to DNA crosslinking compounds such as cisplatin and show 
increased DNA cross-link repair. Inhibition of FancD2 by RNA interference or pharmacological mTOR inhibitors restores RITA  
sensitivity. The therapeutic response to p53-reactivating compounds is therefore limited by compound-specific resistance 
mechanisms that can be resolved by CRISPR-Cas9–based target validation and should be considered when allocating patients 
to p53-reactivating treatments.
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A key problem in the clinical application of molecularly targeted 
drugs is the rapid development of drug resistance. Identification of 
the underlying mechanisms, however, is not only essential for over-
coming resistance but also for predicting drug sensitivity, select-
ing suitable patients for clinical trials and for eventually allocating 
patients to the most promising treatment. As a common character-
istic of p53-Mdm2 interaction inhibitors is that they reactivate the 
tumor suppressor function of p53, it would be expected that their 
activity is dependent on p53. However, chemical compounds are 
often less specific than antibodies and RNA interference, result-
ing in off-target activities. These not only cause adverse side effects  
but also contribute to the therapeutic activity in a poorly under-
stood manner that differs between individual 
compounds25. In recent years, advances in 
genome editing with the CRISPR-Cas9 sys-
tem have proven to be powerful for validating 
genes as drug targets26–28. For example, cells 
with CRISPR-Cas9–induced indel mutations 
in the HPRT1 gene were shown to be enriched 
from heterogeneous cell mixtures by the anti-
metabolite 6-thioguanine (6-TG), confirming 
the importance of HPRT1 for 6-TG–induced 
cell death26.

We therefore used CRISPR-Cas9–mediated 
gene editing to explore the extent to which the 
anti-tumor activities of nutlin and RITA as  
p53-reactivating model compounds depend 
on the presence of functional wild-type p53. 
Though we confirm that nutlin inhibits tumor 
cell proliferation in a p53-dependent man-
ner, we find p53 to be entirely dispensable for 
the activity of RITA. Instead, we show that 
RITA functions as a genotoxic compound that 
induces DNA damage so that its therapeutic 
efficacy becomes limited by DNA repair. In 
particular, we identify the mTOR-regulated 
Fanconi anemia pathway as responsible for 
primary and acquired resistance to RITA. 
Together these data indicate that RITA’s mode 
of action is not p53 dependent but DNA dam-
age dependent, thus highlighting the power 
of the CRISPR-Cas9 system to explore and  
dissect modes of drug action.

RESULTS
RITA is active without p53
Nutlin and RITA were both initially identified 
as compounds that exhibit antiproliferative 
activity in wild-type p53 tumor cells but not  
in p53-mutated or p53-deleted cells9,16. In  
particular, RITA was identified in a cell-based 
screen for compounds with activity in wild-
type p53 HCT116 cells but not in an HCT116 
subclone engineered to be p53 deficient by 
homologous recombination16,17. In light of 
accumulating reports that RITA is also effec-
tive in various p53-mutated cell lines22–24, we  
aimed to explore the p53 dependence of the 
two p53-reactivating model compounds more 
systematically using CRISPR-Cas9–mediated 
gene disruption. p53-proficient HCT116 colo
rectal and H460 lung cancer cells that respond 
well to both nutlin (half-maximum inhibitory 
concentration (IC50): 5 μM) and RITA (IC50: 
0.25 μM) were transfected with Cas9 and sev-
eral subgenomic single guide RNAs (sgRNAs) 

previously validated to successfully target different coding regions of 
TP53 (Fig. 1a,b). Consistent with data showing that Cas9-induced 
double-strand breaks are repaired most commonly by error-prone 
nonhomologous end joining, deep sequencing of PCR amplicons 
spanning the nuclease target sites detected various indel mutations 
(Fig. 1c). By keeping the transfection efficiency low, we detected 
indels in a low percentage (<4%) of cells. The percentage of indels 
progressively increased to 70–90% after 17 d of treatment with nutlin, 
whereas no enrichment was observed in untreated cultures (Fig. 1c).  
In marked contrast to the effect of nutlin, enrichment of indels was 
not consistently observed in the presence of RITA. The sequenc-
ing results were confirmed by semiquantitative assessment of indels 

Fo
ld

 e
nr

ic
hm

en
t o

f p
53

de
le

tio
ns

p53-CRISPR

Days:

100

80

60

40

20

0
10 1710 17

Untreated Nutlin RITA
0 10 17

In
de

l m
ut

at
io

ns
 (%

)

Next generation
p53 amplicon-sequencing

WT p53 cells
(HCT116 or H460)

RITANutlin

Untreated

?

gDNA gDNA

Read counts Read counts

Indel WT

a b

c

60

40

20

0

RITA
Nutlin

80

100

e5.1

e5.1

e5.2

e5.2

e3

e3

HCT116

H460

i1.1 + i9

i1.1 + i9

i1.2 + i9

i1.2 + i9

HCT116

H460

d

gDNA

?

* **NS NS NS NS
NS**

TP53 

e5
.1

e5
.2

i5

i9i1.
1

i1.
2

e3

19.14 kb
∆3.2 kb

19.14 kb

e7

Untre
ated

e Small indels Large deletions

Parental TP53–/– GFP
i5

No. 1e7 e3
i5

No. 2

Untreated

RITA

Nutlin

i1.1 + i9
No. 1

i1.1 + i9
No. 2

55

MW (kDa)
70

–

40
55

R N – R N – R N – R N – R N – R N – R N – R N – R N

β-actin

p53

HCT116

Re
la

tiv
e

cl
on

og
en

ic
ity

0
0.2
0.4
0.6
0.8
1.0 Untreated

RITA
Nutlin

Figure 1 |  p53-deficient cells are resistant to nutlin but not RITA. (a) Schematic outline of 
CRISPR-Cas9–based p53 enrichment assay. WT, wild type. (b) Schematic representation of the 
TP53 gene locus. Cleavage sites (black triangles) of CRISPR-Cas9 nucleases and primers (arrows) 
used for PCR analysis are indicated. (c) Enrichment of cells with TP53 indel mutations. Shown are 
percentages of mutated sequencing reads in cells treated with 7 μM nutlin or 1 μM RITA for the 
indicated time points. Enrichment versus untreated cells at day 0 was tested for significance  
using the nonparametric Friedman′s test and corrected for multiple comparisons using Dunn′s 
test (*P < 0.05; **P < 0.01; NS, not significant). (d) Enrichment of cells with deletion of exons 
2–9 in TP53. Cells cotransfected with a nuclease pair were treated as in c for 10 d and analyzed 
by qPCR for deletion of exons 2–9. Shown is the fold enrichment in treated versus untreated 
cells (mean ± s.d., n = 3). Enrichment versus untreated cells was tested for significance by 
nonparametric Friedman′s test corrected for multiple comparisons by Dunn′s test (**P < 0.01;  
NS, not significant). (e) Colony formation of HCT116 parental and HCT116 p53−/− (ref. 17) cells under  
the indicated treatments compared to CRISPR-Cas9–generated single cell clones with small indels 
or large deletions in TP53. ‘GFP’ represents negative control cells transfected with a GFP-targeted 
nuclease. Western blots confirm the successful inactivation of p53. Relative clonogenicity is 
shown as mean ± s.d. (n = 4). MW, molecular weight; R, RITA treatment; N, nutlin treatment.
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with T7 endonuclease assays (Supplementary 
Results, Supplementary Fig. 1).

As CRISPR-Cas9–induced indels can give 
rise to production of truncated proteins or 
mutated proteins with subtle amino acid dele-
tions or insertions, we also generated p53 gene 
deletions spanning most of the coding sequence 
using two pairs of sgRNAs targeting TP53 
introns 1 and 9 (Fig. 1b). Using primer pairs 
flanking the expected breakpoint region, we 
observed strong enrichment of deleted alleles 
in the presence of nutlin but not RITA (Fig. 1d).  
Likewise, a competitive cell culture assay con-
firmed enrichment of HCT116 depleted of 
p53 by RNA interference (RNAi) in the pres-
ence of nutlin but not RITA (Supplementary  
Fig. 2)29. Together, these findings indicate that 
TP53 mutations, TP53 gene deletions and p53 
knockdown confer a selective growth advan-
tage under competitive culture conditions 
in the presence of nutlin but not RITA. This  
suggests that only the antiproliferative activity 
of nutlin is strictly dependent on the presence 
of functional p53.

To further substantiate these observations, 
we generated various p53-deficient HCT116 
and H460 single-cell clones and tested their 
response to either nutlin or RITA in clonogenic 
survival assays (Fig. 1e and Supplementary 
Fig. 3). Although the previously reported 
p53-deficient HCT116 TP53−/− cells17 were 
indeed refractory to both nutlin and RITA, 
the vast majority of p53-deficient cell clones 
with CRISPR-Cas9–generated small indels or large gene deletions  
were only resistant to nutlin. Using western blotting and Sanger 
sequencing, we confirmed the absence of wild-type p53 in these 
clones (Fig. 1e and Supplementary Fig. 3). A control clone, tar-
geted with a GFP-directed Cas9 nuclease, retained sensitivity to 
both nutlin and RITA. Notably, the sensitivity of p53-null clones 
to RITA cannot be explained by the off-target effects of the used 
sgRNAs as p53-deficient clones generated with multiple different 
sgRNA sequences showed similar results. We therefore conclude 
that nutlin but not RITA requires functional p53 to inhibit tumor 
cell proliferation.

RITA sensitivity correlates with induction of DNA damage
Remarkably, a few p53-deficient HCT116 and H460 clones showed 
resistance to both nutlin and RITA similar to the original HCT116 
TP53−/− clone17 (Fig. 1e and Supplementary Fig. 3), hinting at p53-
independent mechanisms of RITA resistance that can be acquired 
or selected under treatment. In line with this hypothesis, H460 
cells and various other RITA-sensitive cell lines spontaneously 
gave rise to RITA-resistant clones when continuously cultured in 
the presence of RITA for a few weeks (Supplementary Fig. 4a–c). 
We did not observe cross-resistance to nutlin, indicating that func-
tional p53 was retained (Supplementary Fig. 4b,c). Furthermore, 
although A549 cells carry wild-type p53 and are sensitive to nut-
lin, they show primary resistance to RITA (Supplementary  
Fig. 4c). RITA resistance is therefore independent of p53 status  
and caused by other mechanisms.

Notably, RITA resistance of H460-derived subclones was revers-
ible and lost upon continuous long-term culturing in the absence of 
RITA, suggesting a nongenetic cause of resistance (Supplementary 
Fig. 5). Furthermore, we could confirm by measuring the autofluo-
rescence of RITA that resistant clones do not show defects in RITA 
internalization or enhanced RITA export (Supplementary Fig. 6).  

Pharmacological or RNAi-mediated inhibition of ATP binding-
cassette transporters consistently did not resensitize resistant cells 
(Supplementary Figs. 7 and 8). All of the wild-type p53 cell lines 
that became RITA resistant responded to nutlin treatment by 
accumulating p53 and upregulating the p53 target gene encoding 
the cyclin-dependent kinase inhibitor p21CDKN1A, thus excluding a 
defect in the antiproliferative p53 downstream signaling pathways  
(Fig. 2a,b). However, RITA did not stabilize p53 in the resistant  
subclones and failed to activate p21CDKN1A, suggesting a defect in  
the upstream regulation of p53.

As previous reports have suggested that RITA induces DNA 
damage and that p53 is engaged by DNA damage signaling22,30, 
we analyzed our panel of RITA-sensitive and resistant cell clones 
for markers of DNA damage, which yielded a marked correlation 
between RITA sensitivity and induction of H2A.X phosphoryla-
tion as a common marker for double-strand breaks (Fig. 2c,d and 
Supplementary Fig. 9). All of the RITA-sensitive cell lines showed 
massive accumulation of γH2A.X, whereas the original HCT116 
TP53−/− cells; primary resistant A549 cells; and our few CRISPR-
generated, p53-null RITA-resistant clones did not. We concluded 
that RITA resistance is not mediated by p53 mutations but rather by 
defects in DNA damage signaling, which is known to engage both 
p53-dependent and p53-independent arms. Thus, the absence of 
RITA resistance upon p53 inactivation is explained.

RITA resistant cells are cross-resistant to cisplatin
Given that RITA resistance is correlated with a reduced ability to 
induce DNA damage signaling, we tested for cross-resistance to 
DNA-damaging compounds in clinical use. RITA-resistant H460 
cells showed marked cross-resistance to various DNA cross-linkers 
including cisplatin (CDDP), oxaliplatin, carmustin and mitomycin C 
but not to chemotherapeutics such as hydroxyurea or the nucleoside  
analog cytarabin (AraC) (Fig. 3a). Conversely, cells adapted to  
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Color bars indicate RITA sensitivity, as in Figure 1e.
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cisplatin by dose escalation exhibited cross-resistance to RITA, but 
not nutlin (Fig. 3b). Furthermore, parental and RITA- and CDDP-
adapted H460 cells showed comparable signs of DNA damage, as 
measured by γH2A.X induction as early as 6 h after a 2-h treat-
ment with CDDP (Supplementary Fig. 10). Although DNA dam-
age further progressed in parental cells 46 h after discontinuation 
of CDDP, the γH2A.X signal largely disappeared in both RITA- 
and CDDP-resistant cells, consistent with an enhanced ability for 
DNA repair (Fig. 3c). Notably, RITA was shown to act as a DNA 
cross-linking agent before it was described to target the p53-Mdm2 
interaction15,16, thus providing an explanation for cross-resistance. 
Our results suggest that the genotoxic activity of RITA dominates 
possible direct effects on p53 and that DNA repair properties  
determine the resistance profile for this compound.

RITA resistance is mediated by FancD2
The most toxic lesion resulting from cisplatin- 
DNA adducts are DNA interstrand cross-
links (ICLs) that progress to deleterious dou-
ble-strand breaks upon DNA replication31. 
Cisplatin resistance is often acquired because 
of increased ICL repair32, a process that 
requires the Fanconi anemia (FA) pathway to 
coordinate three critical DNA repair processes, 
including nucleolytic incision, translesion 
DNA synthesis and homologous recombi-
nation33. Central to this pathway is FancD2,  
which coordinates the multiple DNA repair 
activities required for the resolution of  
crosslinks33. We therefore explored whether 
FancD2 is responsible for RITA resistance. 
Consistent with our hypothesis, transient 
or stable knockdown of FancD2 effectively 
resensitized various different RITA-resistant 
cell types not only to cisplatin and oxaliplatin 
but also to RITA (Fig. 4 and Supplementary 
Figs. 11–13). First, stable FancD2 knock-
down cells were progressively depleted from 
cocultures in the presence of RITA (Fig. 4a 
and Supplementary Fig. 11). Second, tran-
sient FancD2 knockdown resensitized paren-
tal and RITA-adapted H460 and U2OS cells 
to RITA, cisplatin and oxaliplatin, resulting 
in reduced clonogenic growth (Fig. 4b and 
Supplementary Fig. 12a). We observed resto-
ration of sensitivity to RITA not only in cells 
that were experimentally rendered resistant by 
long-term adaptation to RITA but also in vari-
ous lung cancer cells with primary RITA resis-
tance (Supplementary Fig. 12b–d). Notably,  
FancD2 depletion overcame resistance irre-
spective of p53 status. Depletion of FancD2 
also rendered the original HCT116 TP53−/− 
cell clone17 highly sensitive to RITA, indicat-
ing that its reported RITA resistance is not 
due to its p53 deficiency but rather caused 
by increased FancD2-mediated DNA repair  
(Fig. 4c,d). Likewise, FancD2 depletion also 
resensitized the single p53-deficient, RITA-
resistant HCT116 clone i5#2 (Supplementary 
Fig. 13). Notably, we observed no resensit
ization upon depletion of FancA and FancL, 
which are essential components of the FA 
core complex that functions as a multi
subunit E3 ubiquitin ligase complex for the 
regulatory monoubiquitination of FancD2 

(Supplementary Fig. 14). This is consistent with the notion that the 
FA pathway is not linear and that several protein subcomplexes with 
different functions exist34. Instead, sensitivity was restored upon 
Rad18 depletion, which has been reported as an alternative E3 ubiq-
uitin ligase for FancD2 (Fig. 5a and Supplementary Fig. 15)35–39. In 
fact, both Rad18 and FancD2 proteins were found to be frequently 
upregulated in RITA and cisplatin-resistant cell lines (Fig. 5b and 
Supplementary Fig. 16).

Consistent with FancD2’s role in resolving RITA-induced DNA 
crosslinks and preventing the progression of stalled replication 
forks via RPA32pS33-positive single-strand breaks to γH2A.X-labeled 
double-strand breaks, FancD2 depletion restored the ability of 
RITA to induce RPA32pS33 and H2A.X phosphorylation in resistant 
cell clones (Fig. 5c).
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RITA resistance is overcome with mTOR inhibitors
FancD2 has been shown to be regulated by mTOR signaling, offering 
a perspective for targeting resistance to RITA and other DNA cross-
linking compounds with pharmacological mTOR inhibitors40,41. 
FancD2 upregulation in RITA-resistant cells was indeed accompanied  

with elevated mTOR signaling activity, as shown by increased 
phosphorylation of 4EBP1 and p70S6K (Fig. 6a). mTOR kinase 
inhibition with AZD8055 reversibly reduced FancD2 expression in 
a time-dependent manner (Fig. 6b,c) and sensitized both paren-
tal and RITA-resistant H460 cells to RITA treatment (Fig. 6d). 
Consistent with a specific effect of AZD8055-mediated downregu-
lation of FancD2 on DNA repair, AZD8055 restored the ability of 
RITA to induce γH2A.X in resistant cells (Fig. 6e). Furthermore, 
AZD8055 also sensitized RITA-resistant cells to cisplatin and  
cisplatin-adapted cells to RITA (Fig. 6f). Confirming the target 
specificity of AZD8055, RNAi-mediated depletion of mTOR like-
wise sensitized cells to RITA and cisplatin treatment (Fig. 6g,h).

We conclude that RITA resistance occurs independently of p53 
through mTOR-mediated upregulation of FancD2-dependent DNA 
cross-link repair, whereas mTOR inhibition downregulates FancD2 
and prevents repair of RITA-induced DNA cross-links, thereby 
effectively counteracting RITA resistance.

DISCUSSION
Mdm2 is a key inhibitor of p53 that targets wild-type p53 for degra-
dation and allows tumor cells to evolve in the absence of p53 gene 
mutations. Targeting the interaction between Mdm2 and p53 is 
therefore a very promising therapeutic strategy as reactivation of 
the p53 tumor suppressor could nicely complement the clinically 
practiced inhibition of oncogenic signaling pathways7,10. A protein-
protein interaction can be blocked in a straightforward manner by 
targeting compounds to the interaction interface on either one of 
the two interacting proteins. Although nutlin was designed to fit 
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into the p53-binding groove on Mdm2, RITA was shown to bind to 
p53. In principle, both strategies should result in similar outcomes, 
depend on identical effectors and be limited by the same resis-
tance mechanisms. It was therefore rather surprising to see that the 
inhibitory effect of nutlin on tumor cell proliferation strictly relied 
on the presence of wild-type p53, whereas the activity of RITA did 
not. Multiple RITA-sensitive cell lines retained RITA responsiveness 
upon disruption of the p53 ORF by indel-induced frameshift muta-
tions, p53 gene deletion with paired CRISPR-Cas9 nucleases or p53 
mRNA downregulation by RNAi. In contrast, the response to nutlin 
was lost in all cases. These experiments performed in several cell 
lines with independent methods conclusively demonstrate that the 
two p53-Mdm2 interaction inhibitors nutlin and RITA differentially 
depend on wild-type p53.

In line with our observation of p53-independent RITA activity, 
RITA has recently been reported to kill not only p53 wild-type cells 
but also cells expressing mutant p53 (refs. 22–24). It was hypothe-
sized that binding of p53 to the N terminus of the mutant p53 protein 
could drive p53 folding into a wild type–like, active conformation23. 
Alternatively, RITA might not be a direct inhibitor of the p53-Mdm2 
interaction but rather disrupt the interaction indirectly by trigger-
ing DNA damage signaling–dependent, ATM/CHK2–mediated 
phosphorylation of p53, similar to other genotoxic compounds.  
In line with this, NMR studies failed to demonstrate RITA-induced 
disruption of a p53–Mdm2 complex in vitro42. Likewise, RITA but 
not nutlin triggers extensive phosphorylation at the DNA damage– 
responsive p53 residue Ser15, and CHK2-deficient HCT116 cells 
are refractory to RITA but not nutlin30.

We now show in this study that RITA activity directly cor-
relates with the ability to induce DNA damage, as measured by 
H2A.X phosphorylation of Ser139. Furthermore, RITA resistance 
is associated with remarkable cross-resistance to various DNA 
cross-linking drugs, including cisplatin. As resolution of DNA 
ICLs requires the concerted action of multiple DNA repair path-
ways, we tested the role of FancD2, a central coordinator of ICL 
repair33, in RITA resistance. In all instances of primary or acquired 
RITA resistance, RITA sensitivity was restored upon knockdown 
of FancD2 or inhibition of mTOR, an upstream regulator of 

FancD2 expression40,41. Furthermore, FancD2-depleted or mTOR-
inhibited cells failed to acquire RITA resistance under long-term 
treatment. Most notably, the original HCT116 TP53−/− cell line17, 
which was instrumental in the identification of RITA as a p53- 
reactivating compound16, was rendered RITA sensitive by FancD2 
depletion, proving that the resistance of HCT116 TP53−/− cells is not 
due to their p53 deficiency.

When RITA-sensitive cells were cultured in long-term clono-
genic assays, they consistently gave rise to multiple RITA-resistant 
subclones. This behavior is reminiscent of cancer stem cells, 
which express high levels of ABC transporters that confer drug 
resistance43,44. However, pharmacological or RNAi-mediated inhibi-
tion of ABC transporters did not overcome the resistance to RITA 
(Supplementary Figs. 7 and 8). Notably, A549 cells that express 
wild-type p53 but are nevertheless intrinsically resistant to RITA 
exhibit an exceptionally high fraction of cancer-initiating cells45,46. 
Together, these data suggest that the RITA-resistant phenotype is 
present or develops in the cancer stem cell fraction but can be main-
tained independent of stemness.

In summary, our study identified remarkably different resis-
tance mechanisms to two model p53-reactivating compounds that 
were described to target the p53-Mdm2 interaction from two dif-
ferent sides. Using CRISPR-Cas9 genome engineering to intro-
duce small indel mutations and long deletions into the p53 gene, 
we confirm a strictly p53-dependent anti-proliferative activity of 
nutlin. In parallel, the results question direct targeting of the p53-
Mdm2 interaction by RITA and instead suggest that RITA primarily 
acts as a cross-linking drug whose activity is limited by mTOR-
FancD2–mediated DNA repair. CRISPR-Cas9 genome editing was 
therefore extremely powerful in dissecting the mode of action of p53- 
reactivating compounds. As different modes of action are limited 
by distinct resistance mechanisms, such studies should be imple-
mented extensively before clinical trials are initiated to identify 
groups of cancer patients whose genetic profile most likely predicts 
a therapeutic benefit from the tested compound. 
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Methods
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METHODS
Cell culture. All cell lines were obtained from the American Tissue Collection 
Center (ATCC) and grown in high-glucose Dulbecco’s Modified Eagle’s  
Medium (HCT116, A549, U2OS) or Roswell Park Memorial Institute Medium 
1640 medium (H460, H661) supplemented with 10% FBS, 100 U ml−1 peni-
cillin and 100 μg ml−1 streptomycin at 37 °C with 5% CO2. p53-deficient 
HCT116 p53−/− cells were generously provided by B. Vogelstein (Johns Hopkins 
University)17. Cell lines were regularly tested by PCR for mycoplasma contami-
nation and used for less than 25 passages after revitalization. Transduced cell 
lines were maintained in 1 μg ml−1 puromycin. For induction of doxycycline-
regulated vectors, cell culture medium was supplemented with 1–2 μg ml−1 doxy
cycline (Sigma). Cells were treated with 1–2 μM RITA (Merck) and 5–10 μM  
nutlin-3a (Merck). Chemical structures of all compounds are shown in 
Supplementary Figure 17. CDDP was used at 3 μM, oxaliplatin at 8 μg ml−1, 
carmustin at 50 μg ml−1, mitomycin C (MMC) at 0.05 μg ml−1, cytarabin (AraC) 
at 0.5 μg ml−1 and hydroxyurea at 0.5 mM. AZD8055 (ref. 47) (Selleckchem) 
was used at a concentration of 1–2 μM.

RITA-resistant cells were generated by continuous treatment with 1 μM 
RITA or by dose escalation from 0.005 μM to 2.56 μM RITA. CDDP-resistant 
cells were generated with CDDP in the same concentration range for dose 
escalation or by constant treatment with 2 μM CDDP. Resistant cells were 
maintained with 1 μM CDDP or 1 μM RITA, respectively. Cell titer was 
measured using the CellTiter-Glo reagent from Promega according to the  
manufacturer’s instructions. For colony formation assays, cells were plated 
1 d before treatment. Cells were cultivated for further 10 d before they were  
fixed with 70% ethanol overnight, stained with Giemsa solution and quanti-
fied using the ImageJ plugin ColonyArea48. Luciferase assays with cell culture 
medium were carried out as described previously29.

Lentiviruses. 293T cells were transfected with the calcium-phosphate method 
using lentiviral vector plasmids and packaging plasmids pMD2.G and psPAX2 
(Didier Trono, Addgene plasmids 12259 and 12260). Supernatants containing 
lentiviruses were collected on the second and third day after transfection and 
concentrated by polyethylene glycol precipitation. For lentiviral transduction, 
cells were seeded on six-well plates and infected with concentrated lentivirus 
in the presence of polybrene (8 μg ml−1) and spin infection (1 h, 1,500 r.p.m.,  
37 °C). Cells were selected with puromycin (2 μg ml−1) for 5 d.

RNAi. For siRNA transfection cells were plated at a density of 50–80% on 6-cm  
dishes 1 d before transfection. siRNAs were purchased from Dharmacon and 
were used at a final concentration of 20 nM. Transfection was carried out  
using the Lipofectamine RNAiMAX reagent (Invitrogen) according to the 
manufacturer’s instructions. Lentiviral vector plasmids for stable, constitutive  
or inducible expression of secreted luciferases GLuc and CLuc coupled to p53 
or nontargeting control shRNAs were described previously29. shRNA sequences 
from Open Biosystems are as follows: shFancD2.2 (V2LHS_139155), shFan-
cD2.3 (V3LHS_383034), shFancD2.4 (V3LHS_383035). siRNA sequences:  
siFancD2.6 CAACATACCTCGACTCATT, siFancD2.8 GGAGATTGATGGT 
CTACTA, simTOR.8 GGCCAUAGCUAGCCUCAUA, simTOR.9 CAAAGGA 
CUUCGCCCAUAA, simTOR.10:GCAGAAUUGUCAAGGGAUA, simTOR.11  
CCAAAGCACUACACUACAA.

CRISPR-Cas9 and sequencing. For the generation of p53 knockout cells using 
CRISPR-Cas9 gene editing, sgRNAs targeting the TP53 gene were cloned 
into pX330-U6-Chimeric_BB-CBh-hSpCas9 and lentiCRISPR v1 vectors  
(Addgene) as previously described49. sgRNA sequences are as follows: i1.1  
TCTGCAGGCCCAGGTGA.CCCagg,  i1.2 GGGTTGGAAGTGTCTCA.TGCtgg,  
e3 ACTTCCTGAAAACAACG.TTCtgg, e5.1 GGGGGTGTGGAATCAAC.
CCAagg, e5.2 GTTGATTCCACACCCCC.GCCcgg, i5 GATTCCTCACTGA 
TTGC.TCTtag, e7 CCGGTTCATGCCGCCCA.TGCagg, i9 GAAACTTTCCA 
CTTGAT.AAGagg, GFP GGAGCGCACCATCTTCT.TCAagg.

For enrichment assays, HCT116 and H460 cells were transfected with pX330 
vectors carrying sgRNAs targeting coding exons of TP53. Six days after trans-
fection, cells were either left untreated or were treated with 7 μM nutlin-3a or 
1 μM RITA for up to 10 d. After harvesting the cells, genomic DNA was iso-
lated using the QIAamp DNA Blood Mini Kit according to the manufacturer’s 
instruction and used for the T7 endonuclease I assay, deep sequencing and 
qPCR. For generating p53 knockout cell clones with small indel mutations, 
H460 and HCT116 were infected with lentiviral vectors (lentiCRISPR)50 coex-
pression Cas9 and sgRNAs targeting central TP53 regions and selected with 

puromycin. For generating p53 knockout cell lines with deletions of exons 2 
to 9, HCT116 cells were cotransfected with two pX330 plasmids containing 
sgRNAs targeting TP53 intron 1 and intron 9. Single-cell clones were tested 
for the presence of the deletion and absence of wild-type sequence by PCR, 
expanded and used for further experiments.

For sequencing of indel mutations, the region surrounding the pre-
dicted cleavage site was amplified using barcoded primers: e3_fw 
ACGGCAAGGGGGACTGTAG; e3_rev AGCCCCCTAGCAGAGACCTG; 
e5.1_fw GTGCTGTGACTGCTTGTAGATGGC; e5.1_rev CCTGACTTTC 
AACTCTGTCTCCTTCCTC; e5.2_fw TCCAGCCCCAGCTGCTCAC; e5.2_
rev TTGCCAACTGGCCAAGACCT. PCR products were purified and equi-
molar amounts were pooled. DNA (10 ng) were processed using the NEBNext 
ChIP-Seq Library Prep Master Mix Set (New England Biolabs). The result-
ing library was sequenced on a MiSeq (Illumina). Sequencing library qual-
ity and quantity was evaluated on a Bioanalyzer DNA High Sensitivity chip 
(Agilent) and by digital PCR, respectively. Sequencing was performed on a 
MiSeq (Illumina) using a 6-pM library concentration and MiSeq v2 reagent 
kit and flow cell in a 2 × 250 base paired-end run. Multiplexed reads were 
demultiplexed into separate amplicon-specific lanes by the barcoded primer 
combinations using an error-tolerant primer detection method using the cuta-
dapt algorithm (maximal error rate = 0.04). Lanes were subsequently aligned 
with the Bowtie2 mapper (standard parametrization) to the reference genome 
(Ensembl revision 77, GRCh38). Reads covering the regions of interest were 
extracted from the aligned lanes and insertions or deletions were directly 
inferred from the CIGAR strings. We reported indel percentages as the number 
of reads carrying an insertion or deletion divided by the total number of reads 
covering the putative Cas9 cleavage site. Our estimates were confirmed by 
using the VarScan2 variant caller. As indel detection depends on an accurate 
alignment, we double-checked our findings using BWA (maximum gap open-
ings = 3, max gap extensions = 100) as a second read mapper. Both aligners 
yielded comparable results (data not shown).

T7 endonuclease I assay. Genomic DNA was PCR amplified using primers 
flanking the predicted CRISPR cleavage site (e3: Exon 3_fw: 5′-AGAAGTG 
CATGGCTGGTGAG-3′; Exon 3_rev: 5′-GCAGTCAGAGGACCAGGTCC-3′;  
e5.1&e5.2: Exon 5_fw: 5′-CTGAGGTGTAGACGCCAACT-3′; Exon 5_rev:  
5′-ACCCCAGTTGCAAACCAGAC-3′). After PCR purification using the 
Qiagen PCR Purification kit according to the manufacturer’s instruction, DNA 
was denatured and reannealed in 1× NEB2 buffer (NEB, M0302L) using a 
thermomixer. The reannealed DNA was digested with 5 U T7 endonuclease I 
(NEB, M0302L) for 20 min at 37 °C and separated on a 2% agarose gel.

qPCR and RTqPCR. 100 ng genomic DNA was used as template for qPCR. 
The presence of TP53 deletions induced by CRISPR-Cas9 nucleases was quan-
tified in a qPCR reaction on a LightCycler 480 (Roche) with ABsolute QPCR  
SYBR Green Mix (Thermo Scientific). Primers (Δp53_for 5′-ATAGGGTGC 
ACATTTAGGAA-3′; Δp53_ rev 5′-GGCTAGGCTAAGCTATGATGTTC-3′) 
were used at a final concentration of 300 nM. Amplification protocol: initial 
activation of the Hot Start Taq Polymerase for 10 min at 95 °C, followed by  
40 cycles of 15 s at 95 °C and 60 s at 60 °C.

Gene expression analysis was performed as previously described51. Total 
RNA was isolated with the RNeasy Mini Kit (Qiagen) and cDNA synthesis 
performed with the SuperScript VILO cDNA synthesis kit (Life Technologies) 
following manufacturer’s instructions. Gene expression was quantified on a 
LightCycler 480 (Roche) using the ABsolute QPCR SYBR Green Mix (Thermo 
Scientific). Data were evaluated by the ΔΔCt method. GAPDH was measured 
as a housekeeping gene for normalization.

Western blotting. Cells were lysed in NP-40 Lysis Buffer (50 mM Tris-HCl, 
150 mM NaCl, 5 mM EDTA, 2% NP-40, pH 8.0) supplemented with pro-
tease inhibitor (complete ULTRA tablets EASYpack, Roche) and phosphatase 
inhibitor (PhosSTOP, Roche). Protein yield was determined by Bradford 
assay (Bio-Rad). Total protein (5–30 μg) was separated on NuPAGE SDS Gels 
(Life Technologies) and tank-blotted to PVDF or nitrocellulose membranes. 
Following blocking in Tris-buffered saline with Tween 20 (TBST; 5 mM Tris, 
15 mM NaCl, 0.1% Tween 20, pH 7.5) with 5% nonfat dry milk or 5% bovine 
serum albumin for 2 h, membranes were incubated with primary antibodies 
diluted in TBST/5% nonfat dry milk or TBST/5% bovine serum albumin and 
incubated overnight at 4 °C. Antibodies: anti-p53 (Santa Cruz, DO-1, 1:10,000); 
anti-p53-phosphoSer15 (Cell Signaling, 1:1,000); anti-H2A.X-phosphoSer139  
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(Abcam, 1:500); anti-p21 (Santa Cruz, C-19, sc-397, 1:200); anti-FancD2 
(Santa Cruz, Fl17, sc-20022, 1:500); anti-FancA (Bethyl Laboratories, 1:2,000); 
anti-FancL (Santa Cruz, H-197, sc-66887, 1:200); anti-Rad18 (Abcam, 1:500); 
anti-mTOR (Cell Signaling, 7C10, 1:1,000); anti-p70S6K (Santa Cruz, H-9, 
sc-8418 1:1,000); anti-p70S6K-phospho-Thr389 (Cell Signaling, 1082, 
1:10,00); anti-Akt (Cell Signaling, 1:1,000); anti-Akt-phospho-Ser473 (Cell 
Signaling, 1:1,000); anti-4EBP1-phospho-Thr36/47 (Cell Signaling, 1:1,000); 
anti-β-actin (Abcam, AC-15, 1:5,000). Proteins were detected with secondary 
antibody (anti-mouse IgG-HRP, anti-rabbit IgG-HRP from GE Healthcare, 
1:3,000) and ECL kit (SuperSignal West Dura Chemiluminescent Substrate, 
Thermo Scientific). Uncropped versions of all western blots are provided in 
Supplementary Figures 18–21.

Immunofluorescence. For immunofluorescence staining, cells were seeded 
with 13,000 (HCT116) or 10,000 (H460) cells per well on a μCLEAR plate 
(96-well, Greiner bio-one) and treated with 1 μM RITA for 16 h or with 
16 μM CDDP for 2 h. Cells were fixed for 15 min at −20 °C using ice-cold 
methanol/acetone (1:1) and permeabilized with PBS/0.1% NP-40 2 × 5 min 
at RT. After 45 min of blocking with PBS/0.1% NP-40/5% FCS, the cells were 
incubated with anti-H2A.X-phospho-Ser139 (1:1,500, Millipore no. 05-636) 
at 37 °C for 45 min. The samples were then incubated with 200 nM DAPI 

(Molecular Probes, D-21490) and anti-mouse Alexa 647 (1:400, Molecular 
Probes, A21236) for 45 min at RT. The fluorescence was then measured on the 
BD Pathway Bioimager and analyzed with BD AttoVision software.

Statistical analysis. All experimental results are presented as the mean of at least 
three independent experiments ± s.d., unless otherwise stated. Statistical tests 
were performed as described in the figure captions. P values were corrected for 
multiple comparisons as reported in the figure captions and were calculated 
using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA).
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