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Abstract 
 
Understanding of the brain and the principles governing neural processing requires 
theories that are parsimonious, can account for a diverse set of phenomena, and can make 
testable predictions. Here, we review the theory of Bayesian causal inference, which has 
been tested, refined, and extended in a variety of tasks in humans and other primates by 
several research groups. Bayesian causal inference is a normative model and has 
accounted for human behavior in a vast number of tasks including unisensory and 
multisensory perceptual tasks, sensorimotor, and motor tasks, and has accounted for 
counter-intuitive findings. The theory has made novel predictions that have been tested 
and confirmed empirically, and recent studies have started to map the algorithms and 
neural implementation of the model in the human brain. The parsimony, the diversity of 
the phenomena that the model has explained, and its illuminating brain function at all 
three of Marr’s levels of analysis make Bayesian causal inference a strong neuroscience 
theory. The progress made in understanding Bayesian causal inference in the brain has 
been due to the contributions and collaboration of many labs around the world 
specializing in different research topics and methods exploring different aspects of brain 
function. Overall, this highlights the importance of collaborative and multi-disciplinary 
research for the development of new theories in neuroscience.  
 
 
 
1. Introduction 
 
Neuroscience has been one of the fastest growing areas of science in the last two decades. 
While the proliferation of empirical findings in this area of research has been dizzying, 
parsimonious and unifying theories that probe the principles of cognitive function have been 
far and few in between. Here we propose Bayesian causal inference as a parsimonious and 
unifying theory in cognitive neuroscience and examine its evolution, successes, and 
limitations in that context.  



 
In mid 2000s, in an attempt to account for auditory-visual perceptual phenomena ranging 
from integration to segregation a Bayesian model, known as Bayesian Causal Inference (BCI) 
model 1, was proposed that involved a competition between two hypotheses, a common cause 
and independent causes. In the last 15 years, the model has been extended, refined, and 
adapted to account for a large number of perceptual and sensorimotor phenomena, and vast 
amounts of behavioral data. More recently the neural underpinnings of BCI have been the 
subject of extensive research. The model is mathematically equivalent to a few other models 
that had been proposed in other domains, and the core computation involved in BCI appears 
to be at work in a number of diverse perceptual and sensorimotor domains in humans and 
other species 2. Bayesian causal inference is a computation that appears to be frequently 
employed in a variety of cognitive tasks and domains, and appears to have a long-standing 
evolutionary root2. We therefore, henceforth refer to the core computation, which involves 
competitive priors, as Bayesian Causal Inference theory. We will refer to the Bayesian causal 
inference model of multisensory perception as a model within that theory which has been 
most extensively studied, provides an apt example of Bayesian Causal Inference theory, and 
will be the main focus of this review.  
 
 
 

 
 
Figure 1. Bayesian Causal Inference theory.  Various models employing Baysian inference and competitive 
priors on the causal structure have been proposed to account for a variety of tasks. The models are essentially 
computationally equivalent and fall under Bayesian Causal Inference Theory.  
 
 
In the following sections, we will review studies of BCI within the framework suggested by 
David Marr 3, assessing the theory at a computational level, followed by 
algorithmic/representational level, followed by implementational level. While the initial 



studies and the vast majority of studies to date have focused on the computational level of 
analysis, in the last few years there has been an increasing number of studies that have probed 
the representations and brain mechanisms of BCI.  
 

 
2. Computational level of analysis: 
 
Here we will describe BCI using two examples in the perceptual domain, however, the same 
core computations apply to other tasks and domains of processing as described later.   
 
When faced with sensory stimuli, the nervous system has to estimate the events/sources of 
sensory inputs and has to overcome two challenges: a) determining the causal structure of the 
signals, and b) the identity of the source(s) that gave rise to the stimuli. However, these two 
challenges are intertwined, and cannot be addressed separately and independently.  
 
For example, if we see a talking face and hear speech, the speech perception system has to 
determine whether the two signals originated from the same source (the auditory and visual 
signals were produced by the same person), or whether they came from different sources 
(e.g., the muted video from TV, and the sound of someone speaking in the room). The degree 
of similarity/discrepancy (in time, space, content)  between the auditory and visual signals as 
well as our prior expectations about the structure of the world affect the interpretation of the 
causal structure (whether they originate from the same source or not), but likewise the causal 
structure is important as to whether the signals should be integrated or not (signals with 
different causes should not be integrated), and thus, to the estimation of perceptual variables 
(the content of speech).  
 
In this simple example, there are only two causal structures (or hypotheses) that need to be 
examined, the common cause and independent causes (see Fig. 2a). These two hypotheses 
can be thought of as two priors (or models of the world) that compete to explain the sensory 
data. For this reason, BCI is a form of competitive priors model4–6, and mathematically 
almost equivalent to competitive priors models that had previously been explored in vision 
science4,5,7,8.  
 
As another example, consider the task of acting on objects in the environment which 
sometimes requires determining the slant of objects and surfaces. Determining the slant of an 
oval shape in the visual field requires the visual system to first infer the shape of the object, 
whether it was an oval object or a circular object that has given rise to the oval projection (see 
Fig. 2b). The degree of similarity/discrepancy between the binocular disparity cue and shape 
cue, as well as our prior expectations about the world (how common oval vs. circular objects 
are) affect the interpretation of the causal structure (oval vs. circle), but likewise the causal 
structure is important as to whether the binocular disparity and shape signals should be 
integrated or not (aspect ratio of the oval shape is only informative about slant if the source is 
a circle). Therefore, here again causal structure (object form) priors/hypotheses compete to 



explain the sensory data, and inference based on sensory stimuli leads to the estimation of 
causal structure, and conversely, the inferred casual structure influences the estimation of 
perceptual variables (slant).  
 
 

 
 
Figure 2. Generative model of five different BCI models. a) The generative model of BCI model of bisensory 
perception1. b) The generative model of weight perception in size-weight illusion paradigm9. c) The generative 
model of visual slant perception7. d) The generative model of object form perception in the structure-from-
motion paradigm5. e) The generative model of shape perception in the shape-from-shading paradigm4.  
 
BCI is a normative model that addresses both the problem of causal inference (which causal 
structure/hypothesis generated the stimuli) and the problem of integration/estimation of 
sensory stimuli, in a unified and coherent fashion using Bayesian inference. The probability 
of each causal structure (e.g., C=1, see Fig. 2a or C=”circle”, see Fig. 2b) is computed based 
on the prior probability of that causal structure (e.g., the expectation of a common cause, or 
the expectation of a circle) and the similarity/congruency between the sensory signals, 
according to Bayes Rule. The estimate of each sensory source (e.g., what was said in the 
video/audio, or the slant of the object) is computed based on the probability of the causal 
structures (which determine the extent to which the signals should be integrated) and the 
reliability of the sensory signals (the more precise/reliable signal would play a more 
important role), again according to Bayes rule.  
 
Therefore, the core computations that constitute the Bayesian Causal Inference theory can be 
summarized as follows: a) competition between priors (causal structures) to account for 
sensory data, b) estimation of hidden perceptual/cognitive variables based on the inferred 
causal structure, c) computation of both (a) and (b) using Bayes rule.  
 



A natural starting point for understanding human perception is therefore to hypothesize that 
the human nervous system has evolved a strategy similar to BCI in solving perceptual 
problems. This hypothesis can be tested by comparing the behavior of BCI with that of 
human observers in perceptual tasks (Fig. 2, Fig. 3).  
 
Below, we review the studies that have done exactly that, quantitatively or qualitatively 
comparing human observer data with predictions of BCI in a variety of tasks, and in a variety 
of sensory conditions in each task. We classify the studies by the nature of the perceptual task 
they have tackled, and briefly summarize the findings in each section.  
 

2.1 Spatial perception 
 
Spatial localization of objects, as well as auditory-visual interactions in this process as 
exemplified by the ventriloquist illusion10,11, have been studied extensively (e.g., 12–18). Early 
computational models of multisensory localization had focused on the limited range of cases 
in which the senses deviated little from each other, and therefore perceptual cues were always 
fused into a single unified percept. However, when the auditory and visual signals differ in 
location substantially there is an absence of integration and human data exhibits a spectrum 
of phenomena ranging from segregation to integration. The BCI model explains this by the 
integration of perceptual cues when they are inferred to be causally linked (e.g. when 
proximal), and segregation of the signals when likely to originate from different sources (e.g. 
when far apart). Multiple studies of auditory-visual spatial localization have now been 
performed in which data from observers was compared with BCI1,19–23, and a BCI model with 
only 4 free parameters could account for the observers’ data remarkably well (e.g., 
accounting for 97% of variance in 250 data points)1. 
 
In addition to accounting well for the observers’ perceived location , BCI also makes 
predictions about the judgement of unity (common cause). This allows BCI to also account1 
for a phenomenon that had been previously considered counter-intuitive and puzzling, 
namely, “negative bias”14, by showing how splitting data based on reports of unity can lead to 
bias in location responses. Since trials with perceived independent causes tend to be trials in 
which a larger disparity exists between the encoding of the auditory and visual inputs, 
limiting the analysis to these trials would lead to an apparent negative bias. 
 
In a more recent study24, observers were asked to report not only the auditory location, but 
also their judgment of common/independent cause. In accordance with BCI, the more reliable 
visual stimuli sharpened the window of common cause perception, and increased the visual 
bias of auditory localization when the discrepancy between the two was not large. 
Furthermore, in a later study it was found that the reliability of the visual stimuli was itself 
estimated over time, as modeled through the BCI model25. 
 
While these studies investigated spatial processing along the azimuth, a recent study 
examined the perception of verticality which relies on visual and vestibular information. The 



study performed model comparison and reported that perception of verticality by human 
observers was best accounted for by the Bayesian Causal Inference model26.  
 
Slightly different variants of BCI used by different research groups or in perceptual tasks that 
differed from the original localization task used by1,19,20,22 showed that BCI could account for 
observer data in spatial tasks remarkably well24,27–29, for both humans and monkeys.  
 
Subsequently, several studies have used BCI as a quantitative tool to explore the influence of 
selective attention23, frame of reference30, aging31 , adaptation32, and stability and 
generalization of auditory-visual binding21 in human spatial processing, again confirming that 
BCI captures human spatial processing remarkably well.  
 
 

2.2 Temporal perception 
 
BCI applies to temporal as well as spatial processing. A simple non-hierarchical*1 variant of 
BCI was originally developed to account for behavioral data in a temporal numerosity 
judgment task33. This is the task of reporting the number of flashes and beeps presented 
simultaneously to observers, in which the sound-induced flash illusion often occurs when the 
number of flashes and beeps are not the same34,35, for example, when a single flash is 
accompanied with two brief beeps, leading to the percept of two flashes.  
 
The hierarchical model1(Fig. 2a) was later tested also on the temporal numerosity task and 
shown to account for the data very well both in bisensory conditions21,23,36 and trisensory 
conditions37  capturing interactions among all combinations of flashes, beeps, and taps on the 
finger.  
 
In a study of visual-tactile interactions in temporal numerosity judgment where the deviation 
between number of flashes and taps was limited to one a non-hierarchical approximation to 
BCI was shown to account well for the observers responses38.  
 
A related task to temporal numerosity judgement is temporal rate discrimination or 
categorization. A non-hierarchical variant of BCI was shown to account for observers’ 
auditory-visual rate discrimination2,39.  In a recent study40 using auditory-visual temporal rate 
categorization, the participants’ responses were compared with predictions of three models, 
including the traditional forced fusion model, and the BCI.  BCI could qualitatively and 
quantitatively account for observers’ data and outperformed the other models.  
 

 
* Non-hierarchical versions do not involve a hierarchy of inference (inference about the structure followed by 
inference about the sensory variables). Instead of explicit representation and inference of causal structure, they 
assume a prior on the sensory variables that would capture the two causal scenarios by the mixture of the 
two priors on the sensory variables:  
P(XA,XV)= N(XA-XV,𝛔)*w + ...N(XV|0,𝛔0)N(XA|0,𝛔0)(1-w) 



Although not yet quantitatively studied, given that the sound-induced flash illusion has been 
reported to occur in other species such as rodents41, it is likely that BCI also operates in the 
sensory processing systems of lower mammals.  
 
Auditory-visual temporal processing has also been studied using speech stimuli and temporal 
asynchrony detection task, showing that in addition to the actual physical time discrepancy 
between the two signals, the perceptual experience of synchrony depends on the temporal 
acuity of the observers and the prior expectation of a common cause, and can be accounted 
for by a BCI model42.  
 
Temporal processing in a unisensory setting also requires an inference about the grouping of 
the stimuli. For example, the perception of the time intervals in an auditory sequence would 
depend on the inferred causal structure (whether three brief sounds belong to the same event 
or not). Sawai et al43 demonstrated that a Bayesian causal inference model can account for 
observers’ perceptions of sound sequences.  
 

2.3 Spatio-temporal perception 
 

The need for causal inference is not limited to the situations where information about a given 
sensory variable is available from multiple cues. There are numerous situations both in 
unisensory and multisensory settings wherein the nervous system has to consider multiple 
causal structures (or competitive priors) for determining and estimating the attributes of 
objects (including one’s own body) and events.  
 
For example, interpretation of retinal displacement requires model inference. Yuille, Bulthoff 
and colleagues were the first to note that the perceptual system has to solve a model inference 
problem4,44. They proposed a competitive priors model5 that accounted for the different 
interpretation of visual motion cue for structure depending on whether the object is rigid or 
non-rigid (see Fig. 2c).  
 
More recently, studies of motion perception have shown that human perception can be 
accounted for by Bayesian models incorporating heavy-tailed priors8,45, which have been 
shown to be computationally very similar to BCI 2.  The perceptual system has to determine 
whether two local patches of motion were caused by the same object or different objects in 
order to determine whether or not to integrate the information across space and apply the 
same constraints to both patches.  

 
2.3  Weight perception 
 

BCI has been successful in explaining weight perception. A classic example is the size-
weight illusion in which when lifting two objects that are identical in shape, mass, and 
apparent material, but different in size, the smaller object is perceived to be heavier than the 
larger object46,47.  This illusion had evaded theoretical explanation for decades and had been 
considered to be an “anti-Bayesian” illusion48,49. Indeed a simple non-competitive prior 



Bayesian model would predict the opposite of this phenomenon: the smaller object should be 
perceived as lighter.  
 
Peters et al. 9 showed that a competitive prior model, equivalent to BCI, in which priors on 
density relationship between the two objects compete to explain the sensory data, can 
qualitatively and quantitatively account for the illusion. Furthermore, the model accounts for 
findings of other studies such as the effect of training with small heavy objects on the 
illusion. Importantly, the model made a novel prediction that the prior expectations of the 
density relationship across individuals should correlate with the degree of illusion 
experienced, subsequently confirmed in experiments9.  
 
Similarly in the material-weight illusion, when lifting two objects that have the same size, 
shape, and mass, the object that appears to be made of low-density material (such as 
styrofoam) is perceived to be heavier50. Peters et al.51 showed that the same Bayesian model 
with competing priors on density relationship can also explain this illusion. 

 
2.4  Body ownership perception 

 
Research in the field of body perception over the last two decades has revealed that even the 
perception of body ownership and attributes are remarkably malleable and involves 
continuous processing of multisensory information such as visual, proprioceptive, tactile, and 
vestibular inputs52–60. 
 
In the Rubber-hand illusion52, the observer experiences ownership over a fake rubber hand 
positioned where one’s own hand typically would be when the real hand is out of the view 
and stroked simultaneously (tactile input) with the visible stroking of the rubber hand. This 
illusion also produces a recalibration of the proprioceptive perception of the real hand.   

 
Samad et al.61  offered the first computational account of the rubber-hand illusion through a 
BCI model with two competing causal structures, one in which all the sensory signals are 
caused by the same object, the observer’s hand, and one in which the proprioceptive and 
tactile signals are caused by the real hand, and the visual signal is caused by the rubber hand. 
The outcome of causal inference computation depends on the spatial and temporal 
discrepancy among the signals and the prior probability of a common cause for the sensory 
signals. The model provided a parsimonious explanation for the known phenomena, but also 
predicted that the illusion could also be experienced in the absence of tactile input (stroking) 
confirmed through both subjective reports and skin conductance data. The model also 
predicted that the Rubber-hand illusion and accompanying proprioceptive drift would not 
occur if the rubber hand is placed at 30 cm or more from the real hand, consistent with 
behavioral data62. An analogous body ownership phenomenon, the Rubber-foot illusion, can 
similarly be accounted for by BCI63. A conceptualization based on BCI has been proposed to 
account for several experimental findings regarding body ownership illusions64.  



Another phenomenon that is related to the perception of self is the sense of agency, in which 
one perceives one’s own actions to have caused an observed event. A BCI model was shown 
to qualitatively account for empirical findings related to the sense of agency65.    

 
The illusions of body ownership have also been observed in monkeys, and BCI has been 
shown to account for behavioral responses from monkeys as well as those of human 
participants66. These findings again suggest that the Bayesian causal inference is not unique 
to the human brain and has a longer evolutionary history. 
 
 

2.5 Sensori-motor processing: 
 
At any given moment, the visual system has to perform causal inference to determine how 
many causes exist for any changes in the retinal image, and accordingly, estimate the 
movement of objects in the scene and one’s own eye/body movements (e.g., so that we can 
navigate accurately and not bump into things). Human postural behavior has been accounted 
for well by a causal inference model with competing priors of self vs. environment as causes 
of retinal displacement67. 
 
Despite the continual changes in the retinal image caused by frequent saccades, we perceive 
the world to be stable and generally not moving. Atsma et al.68 showed that as quantitatively 
predicted by BCI, spatial constancy depends on the degree of consistency between pre-
saccadic object location memory and post-saccadic visual input, and the two signals are 
integrated and/or segregated based on the posterior probability that they refer to the same 
position in the world (common cause).   
 
When the eyes move, the motor system sends a copy of the command sent to the muscles to 
the sensory system, a signal known as the “efference copy.”69  When we are passively 
moved--for example, riding in a moving car--the retinal image changes and there is no 
efference copy of motor commands available for spatial updating. In a study of passive self 
motion, Perdreau et al.70 found that as predicted by BCI, the perceptual system weighs the 
integration of the internally updated target position and of the visual feedback by the 
posterior probability that they correspond to a common position in the world. The data were 
accounted for by BCI and the account was superior to those of alternative models.  
 
Another important perceptual task for mobile organisms is to determine the direction of 
heading during movement. Because visual and vestibular information may not always be 
originating from the same source (body movement), similarly to examples above, the nervous 
system has to first determine if the two sensory signals have a common source, and if so, to 
integrate them optimally to best estimate the heading direction and velocity. It has recently 
been shown that BCI can account for human heading perception71, as well as heading 
perception in monkeys72,73.  
 



Recent studies also support the idea that the process of determining the source of an error in 
any action is governed by Bayesian causal inference. The motor system typically receives 
feedback from the visual system. When faced with an error (e.g. the deviation from the target 
in reaching), the motor system has to determine whether the error is due to the motor system 
or due to other sources (e.g., change in the environment/target, etc.). If the error is due to the 
motor system, it needs to be corrected, but not otherwise.  A study by Wei and Körding74 in 
which the visual feedback of the observed error was manipulated reported a pattern of motor 
learning/correction consistent with that predicted by a model similar to the Bayesian causal 
inference. Participants showed no correction if the error was large (and thus the error was not 
attributed to the motor system; but instead attributed to the experimenter, for example).  The 
largest correction occurred for the largest size error that could still be attributed to the motor 
system (not too large relative to the variability of the motor system). Motor adaptation has 
also been examined in a setting that allowed change in both the environment and the motor 
system (e.g., due to fatigue, etc.) and shown to follow BCI75. Participants’ behavior in several 
studies in which participants’ movements were perturbed experimentally have been 
accounted for by BCI as well (see 76).  

 
 
2.7 Other perceptual and sensorimotor tasks  
 

Visual slant perception has been accounted for by Bayesian models utilizing mixed priors7,77 
or heavy-tailed likelihoods78 that have been shown to be equivalent or very similar to BCI2.  

 
The oddity detection task is a task that can involve stimuli in one sensory modality or in 
multiple sensory modalities. Hospedales et al.79  showed that a BCI-style model can nicely 
account for both unisensory and multisensory oddity detection findings that had been 
previously posed as a challenge to forced fusion maximum likelihood models of sensory 
integration. The human observer data showed that the detection of oddity depended on the 
degree of discrepancy between the components in each stimulus, and thus whether or not they 
are bound together.  

 
BCI has also been employed to account for behavioral data in tasks related to speech 
perception, such as judgment of asynchrony between auditory and visual speech tokens42, the 
McGurk effect80–82, and the identification of phonetic categories across speakers83.  
 
Research on animal navigation has indicated that many animals, including rats, hamsters, 
honeybees, and spiders,  can exploit multiple sources of information by utilizing path 
integration (the ability to keep track of distance and direction of path traversed) and 
landmarks. The pattern of processing of the two cues qualitatively follows Bayesian causal 
inference, in that when the discrepancy between the two cues is small, a bigger weight is 
given to the landmark cue than path integration, and when the conflict between the two cues 
is large, the landmark cue seems to be ignored84,85. This is consistent with a process of causal 
inference, deciding whether the landmark cue corresponds to the target or to another 
location2.  



 
 
2.8  Learning, adaptation, recalibration, and selective attention 

 
While psychologists and neuroscientists have studied adaptation, recalibration, perceptual 
learning, and selective attention for decades, an understanding of how computation and 
neural processing is affected by these processes has remained elusive. Because Bayesian 
models, such as BCI, allow quantitative and rigorous characterization of the various 
components of perceptual and sensorimotor processing in each individual subject, the change 
in each of these components can be examined quantitatively in various settings and scenarios.  

 
Odegaard et al.23 investigated the influence of selective attention to visual or auditory stimuli 
in a spatial localization task and a temporal numerosity judgment task. Surprisingly, they 
found that selective attention only benefits the sensory modality that is already “good” (or 
reliable) at the task, and not the sensory modality that is weaker (or less reliable). 
Specifically, using BCI model fitting they found that in the spatial task, visual precision 
improves and in the temporal task auditory precision improves as a result of selective 
attention. The tendency to bind the stimuli (or perceive a common cause) did not seem to be 
affected by selective attention to a specific sensory modality. A more recent study.86 also 
used BCI in an attempt to characterize the effect of selective attention to visual and tactile 
modalities on processing components. 

 
The spatial recalibration of auditory map by vision is known as the ventriloquist aftereffect, 
and happens after repeated exposure to simple visual and auditory stimuli that are presented 
to the observer at a fixed spatial discrepancy. The same outcome can be due to either a shift 
in auditory representations of space (likelihood functions), or the prior distribution of the 
stimuli (priors), or a combination of the two. Wozny et al.32 investigated ventriloquist 
aftereffect in human observers using BCI and showed that the observer responses were most 
consistent with a shift in the likelihood functions, therefore, supporting a very low-level 
neural representation phenomenon.  

 
Using the same experimental paradigm, however, manipulating both the spatial and temporal 
discrepancy between the visual and auditory stimuli during the adaptation phase, Odegaard et 
al.87 investigated if there are sensory exposures that can modify the priors rather than 
likelihoods in the spatial localization task. Surprisingly, they discovered that repeated 
exposure to large auditory-visual spatial discrepancy resulted in an increase--instead of a 
decrease--in the prior expectation of a common cause. Using the BCI framework, they 
explain why such an adaptation exposure can enhance the tendency to bind, an effect that 
could potentially be exploited in clinical and educational applications.  

 
The recalibration paradigm described above involves passive exposure to auditory-visual 
stimuli, no task, and no feedback during the exposure phase. In contrast, in perceptual 
learning paradigms, the observer actively performs a task during a training phase, and usually 
receives feedback on the accuracy of their responses. In a study using perceptual learning 



paradigm, McGovern et al.88 trained observers in an audio-visual simultaneity task, and 
examined their AV integration in a spatial localization task before and after the training 
session. They found two effects of training: the window of integration narrowed and there 
was an overall reduction in integration across the whole range of spatial discrepancies. They 
showed that a BCI model that included both spatial and temporal variables (an extension of 
Kording et al.1 model) could quantitatively and qualitatively account for the findings well, by 
indicating an increase in temporal precision and a reduction in the tendency to bind 
subsequent to training.  

 
Different sensory modalities encode space in different frames of reference (e.g. vision in eye-
centered, audition in head-centered) and yet our perception of space is unified and coherent 
and independent of the modality of origin. However, several studies of spatial perception 
including those discussed above have suggested that the human perceptual system utilizes 
priors in the estimation of auditory-visual location. Therefore, this begs the question of which 
frame of reference the prior expectation of space is encoded in. Odegaard et al.30 recently 
investigated this question using BCI and manipulating the direction of gaze of human 
observers in an auditory-visual localization task. The results of their quantitative BCI 
modeling suggested that the frame of reference is a combination of eye-centered and head-
centered frames.  

 
In summary, the BCI model has not only accounted for a vast number of perceptual and 
sensorimotor phenomena, but has also been used to quantitatively characterize and elucidate 
effects of modulations to processes such as attention, adaptation and learning. 
 
 
3. Algorithmic level of analysis: 
 
The studies discussed so far have collectively provided compelling evidence that BCI 
accounts for the computations carried out by the perceptual and sensorimotor systems in the 
human brain.  These studies have shown that human (and other primates) behavior in a vast 
range of settings and tasks is consistent with the behaviors exhibited by Bayesian causal 
inference, both qualitatively and quantitatively. Importantly, BCI has been shown to be not 
overly flexible or powerful and has passed the various tests of parsimony, specificity, model 
comparison, and model prediction testing (see Box 1). Therefore, all-in-all, the evidence for 
the Bayesian causal inference as a governing computation carried out by the human nervous 
system in the wide range of tasks and domains discussed above has proved to be compelling.  
 



 
 
Figure 3. The general approach used to gain insight into the computations used by the 
nervous system to solve a problem (to perform a given task). This approach has been 
successful in shedding light on the computations and goals of different brain systems.  
 
The approach used in these studies is to compare the human observers’ behavior in a given 
task and for a given set of stimuli with that of a BCI model, and examine whether the 
responses qualitatively and/or quantitatively are consistent with each other. Therefore, this 
approach can be characterized as comparing two black “boxes” with each other (see Figure 
3). When providing the same input to the boxes, they produce the same output, suggesting 
that the two boxes carry out the same computation. While this approach is informative about 
the computation involved, it does not shed light on how the computation is carried out. For 
example, if we feed number 2, 5, and 7 to the two black boxes and they both output 4, 10, and 
14, respectively, we can infer that the computation that is carried out by the boxes is 
multiplication by 2, but this computation can be carried out in a lot of different ways, both at 
an algorithmic level, and at an implementation level. For example, one box may carry out the 
computation by using a look-up table, whereas the other one may carry it out by applying the 
multiplication by 2 operation, or by adding the input to itself. Also, one box may use a 
calculator, whereas the other box may use an abacus.  
 
A recent example of how this approach can be used to examine the algorithms used to 
perform inference examined the role of perceptual uncertainty25. A key aspect of Bayesian 
inference is the estimation of the uncertainty of each variable. The estimation could 
conceivably be done instantaneously by the nervous system for each sense, but instead seems 
to be estimated over several seconds, thus providing a smoother, less noise-prone estimation. 
 
In order to shed light on the representations or algorithm used by the human nervous system 
in computing BCI, Beierholm et al.19 asked whether priors and likelihoods are represented 
independently in human auditory-visual spatial processing. To approach this question, the 
visual stimulus contrast was manipulated to lead to two different levels of 
reliability/precision, and hence two different likelihood functions. The study examined 
whether the estimate of the priors changed as a result of change in the stimulus precision (and 
in turn, change in likelihoods). The results suggested that priors remained the same despite a 
substantial change in likelihoods. Therefore, this study provided evidence against 



representations and algorithms that would rely on lookup tables, and provided support for the 
idea that the nervous system achieves the optimal Bayesian causal inference by encoding 
likelihoods and prior distributions independently of each other and then combining them 
according to Bayes Rule (Fig. 3a).  
 
 

 
Figure 4. a) One algorithm for carrying out Bayesian inference in the brain.  b) An algorithm for carrying out 
BCI computations. c) Possible neural architecture of BCI in sensory tasks in human brain40,89,90. d) A proposed 
neural circuitry for BCI in auditory-visual spatial tasks, reproduced from91. e) A proposed neural circuitry for 
BCI in a vestibular visual heading task, reproduced from92.  
 
 
More recently, multiple studies using a variety of neuroimaging techniques have probed the 
representations and processing of BCI in human observers. Despite the significant variety in 
tasks used, and the methods of study, all of these studies have suggested that the human brain 



carries out BCI in a sequential fashion (Fig. 3b), by first representing the unisensory 
estimates (e.g., XA and XV), followed by computing and representing the reliability-weighted 
fusion of the unisensory estimates, followed by estimates of causal structure, followed by the 
combination of the fusion and segregation estimates according to the probability of their 
respective causal structure to produce the BCI estimates of the variable of interest (time, 
space, etc.)40,89,90,93. Therefore, these studies confirmed what Beierholm et al.’s19 study had 
suggested which is BCI is not only a good computational model of perception, but also a 
good process model94.  
 

 
4. Implementational level of analysis: 
 
The studies discussed above shed light on the representations and processes involved in BCI. 
The next important question is how this algorithm is carried out by the machinery of the 
brain, networks of neurons.  
 
Some of the studies discussed above, in addition to shedding light on the representations and 
algorithm used by the human nervous system, have also examined the specific brain areas 
involved in each of these processes.  These studies have used physiological measurements of 
brain activity together with the predictions of the BCI model to gain insight into brain areas 
involved in encoding the different components of BCI computation.  
 
For example, using fMRI and a spatial localization task, Rohe et al.89 investigated the role of 
different brain areas along the human visual pathway in representing various relevant 
variables and computations of Bayesian causal inference. They found a hierarchical and 
sequential evolution of computation starting with the representation of unisensory auditory 
and visual estimates of location in primary visual and auditory cortical areas, followed by the 
reliability weighted integration of the two signals in the anterior parietal region, followed by 
the final combination of location estimate from the two causal scenarios in the posterior 
parietal region. A similar approach90, however using the temporal numerosity judgment task 
(counting number of flashes and beeps) and EEG measurements and analyzing the temporal 
dynamics, showed the same style of processing. Sensory cortical areas appeared to produce 
unisensory estimates of the number of flashes and beeps, followed by higher-up 
representation of multisensory estimates of numerosity under the common cause vs. 
independent causes assumption, followed by the final BCI estimate. The data also suggested 
that pre-stimulus oscillatory alpha power and phase may be the mechanism for encoding the 
prior bias for a common cause. Another study using EEG to investigate temporal dynamics of 
BCI, but utilizing a spatial localization task, reported the same hierarchical processing of 
information as found in the temporal numerosity task93. 
 
Furthermore, a study probing the neural mechanisms of BCI by investigating the temporal 
dynamics using MEG employed a somewhat different temporal task (temporal rate 
categorization) and yet reported the same pattern of hierarchical evolution of the computation 



from sensory cortical areas advancing to higher areas of processing including parietal regions 
and prefrontal regions of the brain40. While this study also showed parietal regions to be 
involved in processing multisensory estimates, the arbitration between the common cause vs. 
independent cause hypotheses, and the combination of the two estimates appeared to take 
place in the prefrontal cortex.  
 
A recent study sought to illuminate the implementation of BCI at the level of individual 
neurons and populations of neurons within a brain area in the context of body ownership66. 
The activity of neurons in monkey premotor cortex was recorded in unisensory and 
proprioceptive-visual conditions in a behavioral paradigm analogous to the Rubber-hand 
illusion. The study found neuronal activities (both at individual neuron level and population 
level) correlated with various components of BCI, namely segregation,  integration of the two 
modalities, and posterior probability of a common cause.  
 
These studies provide compelling evidence that the human and primate nervous systems 
implement BCI for a variety of tasks across a variety of sensori-motor pathways. However, 
how exactly these brain areas and neurons accomplish these computations remains unclear.  
Previous work had shown how theoretically neurons could perform cue integration through 
Probabilistic Population Coding95,96 (PPC), while segregation relies only on potential 
parameter transformation.  It has also been proposed that the dynamic properties of single 
neurons, single synapses, and sensory receptive fields in effect carry out the non-linear 
computations involved in causal inference97. The challenging question that had not been 
probed until recently was how the posterior over the common cause would be computed by 
networks of neurons, and how to use this to non-linearly combine the integrated and 
segregated estimates.  In the last several years, suggestions have been made to address these 
questions. 
 
Ma & Rahmati98 used the vocabulary provided by PPC to build a 'neural circuit' that would 
be able to perform the exact computation required for estimating the posterior probability of 
the common cause. While they were able to devise such a circuit, they acknowledged that the 
biological plausibility of this method was questionable due to the complexity of the circuit.  
 
Yamashita and colleagues99 developed a network, consisting of a single layer with lateral 
connections, that performed an implicit calculation of the probability of a single cause and 
was able to replicate the observed behavior. However, as a consequence of just using a single 
layer, access to unisensory information would be lost. 
 
In contrast, Cuppini, Ursino and collaborators created a neural network based on two parallel 
layers representing two unisensory modalities as well as a crossmodal layer receiving inputs 
from the uni-sensory layers91,100,101. Although not explicitly encoding probabilities, the 
connectivity within, and across layers, produced behavior very similar to the non-linear cue 
combination of causal inference, with cues being pulled together when close together, but 
unaffected when further apart.  
 



Neurophysiological studies of heading direction in monkeys have reported neurons that 
appear to encode full integration of the signals and neurons that appear to be tuned to 
opposite directions (known as “opposite neurons”). Inspired by these findings Zhang et 
al.92,102 proposed a model consisting of integration neurons and opposite neurons that can 
estimate the probability of a common cause, and account for behavioral data on heading 
direction. A limitation to this theory is however that it only applies to circular variables (e.g. 
direction) as it relies on the properties of neurons with opposite direction tuning. 
 
Using an alternative approach Yu and colleagues100 used importance sampling as a proposed 
method of neural computations, an approximation that has previously been shown to be 
biologically feasible101. By combining importance sampling with principles from PPC they 
were able to recreate the posterior probability of common cause in the BCI model. An 
intriguing possibility explored in the paper is to what degree this method can be used to 
generalize to multiple stimuli (>2), a computationally difficult problem (see Box 1). In a later 
paper103 these ideas were extended to allow the same neural circuit to perform both the causal 
inference estimation, as well as the integration of cues. 
 
These models have used simple biological mechanisms and connectivity patterns (e.g., long 
lateral inhibition) that are known to exist in sensory cortices of primate brains, to either 
explicitly or implicitly encode the probabilities required for the algorithms in BCI. Overall, 
while there are still uncertainties about how the brain implements a causal inference strategy, 
there are several proposals of ways it could happen. Future experimental work, in 
collaboration with more modelling, is needed to narrow down these hypotheses. 
 
5. Discussion 
 

5.1 The emergence of BCI as a neuroscience theory 
 
Up until early 2000s, the predominant model of multisensory processing and cue combination 
was maximum likelihood estimation that implicitly assumed the sensory signals stem from 
the same source, and therefore, should completely get fused in the estimation of the source. 
Research on the BCI model started by making the observation that sensory signals don’t 
always get fused14,35; sometimes they get fused (full integration leading to illusions if there is 
a discrepancy), sometimes they are segregated, and sometimes they interact partially33. It was 
shown that a normative Bayesian model that allowed both integration and segregation could 
account for these observations1,33 and also explain counter-intuitive phenomena1 such as 
negative bias14. Later,  the same model was shown to account for other multisensory 
phenomena, while making novel and unexpected predictions in different tasks which in turn 
were also empirically tested and confirmed51,61.  
 
The BCI model involves competition amongst hypotheses, aka, priors. For this reason, this 
model can also be referred to as a “competitive prior” model. The BCI model that was 
proposed in the context of multisensory perception is mathematically equivalent to the 



competitive prior model that had been proposed earlier in the context of visual perceptual 
tasks5,7. As discussed in section 2, the BCI model or variants of it have successfully 
accounted for human (and other mammalians) behavior in a number of different tasks ranging 
in processing domain (spatial, temporal, spatio-temporal, speech, etc.), ranging in 
combination of sensory modalities (unisensory visual, unisensory auditory, multisensory with 
various combinations of sensory modalities), perception of the world as well as perception of 
self (body perception and ownership), sensorimotor, and motor processing. It appears that 
evolution discovered this powerful computational mechanism and employed it in a variety of 
processes in the nervous system.  
 
 

 
Figure 5. Bayesian Causal Inference is a unifying theory. Each box represents a domain of brain 

processing and the numbers in each box are references to the studies that have shown BCI accounts for a task in 
that domain. BCI accounts for empirical findings in a large number of studies probing diverse tasks ranging 
from sensation to action, and a vast number of phenomena that appear completely unrelated, or appear counter-
intuitive.  

 
 

5.2 The validity of BCI as a neuroscience theory 
 
A strong neuroscience theory should be able to account for existing data, and make 
predictions that can be tested and verified. It should be simple, yet able to explain a diversity 
of phenomena104. And lastly, it should be verifiable at all three levels of analysis as proposed 
by Marr3.  



 
BCI is a simple and normative model (see Box 1) that has accounted for a wide variety of 
phenomena (see section 2). It is a parsimonious, unifying theory of perceptual and 
sensorimotor processing, governing the realms of multisensory perception, unisensory 
perception, body ownership perception, as well as sensorimotor processing (Fig 5).  
 
The research summarized in section 2 is the computational level of analysis that was carried 
out in a distributed fashion by several research groups around the globe. Once BCI was 
established as a successful computational model, research groups started exploring the 
algorithmic/representational and implementation aspects of it by investigating neuronal 
architectures and circuitries that can carry out the computation in the nervous system104.  
 
As summarized in sections 3 and 4, a variety of recent studies employing sophisticated 
neuroscientific methods, for example, EEG, fMRI, MEG, and single-electrode recordings, 
and using machine learning methods of analysis, have reported a hierarchical architecture in 
the human (and primate) cortex that appears to implement BCI in multiple processing 
domains. Moreover, several studies by different research groups have proposed specific and 
biologically plausible neural circuits that could carry out BCI in the context of spatial or 
temporal processing tasks. Thus, BCI has been tested on all three of Marr’s levels, emerging 
as a strong neuroscience theory.  
 
We argue that this hierarchical and systematic approach to understanding brain function that 
is based on a sequence of observation of behavior, developing theoretical ideas, testing 
predictions, exploring generality, and investigating algorithms and potential neural 
implementation provides a template for a successful approach to understanding the brain 
function. It also demonstrates the effectiveness of the scientific method104,105 and scientific 
collaboration, and the power of multi-disciplinary approaches to brain research.  
 
  



Box 1:   
How meaningful is a good fit to the data? 

 
Some have criticized Bayesian models of cognition by questioning their flexibility due to the 
potential use of ad hoc priors or a large number of free parameters. It is indeed possible for a 
model to be excessively flexible/powerful and account for any set of data and thus, not shed 
light on the true underlying computations at work. This warrants examination of the nature, 
structure, and flexibility of the model.  
 

- BCI is not an ad hoc model that was concocted to fit the data. It is based on a 
generative model that reflects the causal structure of events in the environment (or the 
body) leading to the stimuli that are observed by the nervous system. BCI is a 
normative model and represents the optimal way of solving the problems of causal 
inference and source estimation, problems that the nervous system has to solve in a 
large number of processing domains from early sensory stages all the way to 
cognitive and motor stages. 

 
- BCI accounts for data with few free parameters. BCI models typically have a 

small number of free parameters (usually 3-4) accounting for large sets of data 
(usually more than 500 data points). Moreover, fitting the parameters using a subset 
of the data (not used in the subsequent parameter-free model prediction testing)33,37 or 
showing that the model fails to account for scrambled data33 provide additional 
evidence that the model is not overly flexible, and its account is selective to the 
observer data.  

 
- BCI models can account for patterns of behavior even with no free parameters.  

BCI makes qualitative predictions about the pattern of behavior in a range of stimulus 
conditions that have been repeatedly confirmed by empirical data in a variety of tasks, 
populations, and processing domains. This includes complete fusion and a large bias 
by the more reliable/precise cue when the disparity is small, complete segregation of 
the cues when the discrepancy is large, or ‘partial integration’ (assuming model 
averaging) when the discrepancy is moderate. No other model had been able to 
account for this pattern of behavior. 

 
- BCI models outperform alternative models.  In some studies (e.g., 1,26,78)   BCI was 

compared with other models of comparable complexity (same or larger number of 
free parameters) and was shown to provide a better account for the data.  

 
- BCI’s predictions--including some counter-intuitive predictions-- have been 

empirically confirmed51,61. This is generally considered the ultimate test of a theory, 
and so far BCI has successfully passed this test.  

 



These facts and findings collectively provide compelling support for BCI as computation 
governing the perceptual and sensorimotor processing as discussed in section 2.  
 
 
 
 

Box 2: 
Limitations and outstanding questions:  

Computational level of analysis 
 

- How are BCI computations carried out in natural environments? The nervous 
system typically is faced with a large number of sensory (or sensorimotor) signals at 
any given moment. These situations would require the nervous system to choose from 
a large number of causal structures, and hence the problem of combinatorial 
explosion.  As the number of parameters increases faster than exponential, 
approximations are needed when multiple cues are present37 or more clever generative 
models are also possible106 that allow for the number of parameters to grow with the 
stimulus size using non-parametric Bayesian inference. It is also possible that instead 
of computing exact probabilities, the nervous system can overcome the computational 
intractability by instead computing approximations of the probabilities107. Are there 
strategies, constraints, heuristics, or approximations utilized by the nervous system to 
make the probabilistic inference involved in BCI more computationally efficient and 
tractable?  

 
- Is there a difference in the way high-level priors vs. low-level priors influence the 

computation? Our current knowledge of the priors involved in BCI is limited. It is 
clear that biases can influence the inference in the various tasks explored at multiple 
levels of processing. For example, in a spatial localization task, the prior expectation 
that the visual and auditory signals have a common cause plays an important role in 
the perception of location, however, this prior bias can be induced by high-level 
cognitive factors such as experimenter’s instructions, as well as low-level biases that 
are due to the statistics of the environment and likely encoded at early sensory stages 
of processing.  

 
- What is the nature of the priors? While some studies have started investigating the 

properties of Bayesian priors19,21,30, there are still some basic questions about the 
nature, plasticity, and other characteristics of priors that are not explored and 
understood. For example, in a multisensory setting, are there different priors for 
unisensory vs. multisensory conditions? In a similar vein, in situations where sensory 
information is available from multiple senses, does BCI in each sensory modality 
(e.g., the various visual cues for depth, or object identification) take place prior to 
inference across the senses (e.g., auditory and visual depth cues, or cues to object 
identity), or do they occur in parallel? 



 
- What determines the loss function? There is some evidence that at least in some 

basic spatial and temporal tasks the loss function is not uniform across individuals, 
and may not be uniform even within an individual across time20,21. What are the 
factors that determine the loss function for any given task, individual, situation?  

 
 

Box 3: 
Limitations and outstanding questions:  

Representational and implementation levels of analysis 
 
 

- To what extent the inferred causal structure accessible to consciousness? While 
the probability of each causal structure is computed in BCI and contributes to the 
estimation of the variables of interest (e.g., spatial location, time, speech, etc.), it is 
not clear whether this inference is accessible to consciousness, and whether the 
nervous system commits to a given causal structure at any stage of processing. If we 
do not explicitly ask participants to report their perceived causal structure (e.g., 
common cause or independent causes), would the nervous system bother with an 
explicit/conscious encoding of these probabilities? 

 
- Does the nervous system encode probability distributions or some summary 

statistics of the distributions? For example, it is possible that the system only 
encodes the mean (or max) and/or variance of the probability distributions. For a 
complicated probability distribution it becomes impossible for the brain to explicitly 
encode it. In such cases does the brain rely on other approximations, such as 
sampling?107  

 
- Is BCI hardwired or learned by the human brain? It is possible that it is hardwired 

for some basic tasks and learned for others. If it is learned, what are the mechanisms 
for learning, at what age do they emerge, and how fast are they learned? 
 

- What are the neural mechanisms of BCI in the human brain? Very little is known 
about the implementation of Bayesian inference in the brain in general. It is not clear 
whether and how probability distributions are represented in the nervous system, how 
prior knowledge is combined with likelihood functions (or sensory input). The studies 
using fMRI, EEG, MEG and single electrode recordings discussed in sections 3 and 4 
have shed light on the architecture and brain areas where some of the BCI 
computations may take place, however how the computations are carried out at the 
level of circuitry and network of neurons is still unclear. The neural network models 
discussed in section 4 provide a proof of concept that such implementation is possible, 
however which mechanism is employed by the biological neural networks remains a 
topic of future research.  



 
Interestingly, gaining insight into the neural mechanisms of BCI may shed light on the 
computational strategies of BCI for realistic complex situations with several sensory inputs, 
and the problem of combinatorial explosion discussed above. It is likely that evolution has 
found a trick to make this computationally intractable task feasible, and investigating the 
neural implementations of BCI may reveal simple approximations or heuristics that make this 
problem computationally tractable.  
 
 

Acknowledgements 
We thank Uta Noppeney and Megan Peters for their helpful comments on the first draft of 
the manuscript. We thank Leon Shams for his assistance with the figures.  
 
  



 
References: 

1. Körding, K. P. et al. Causal inference in multisensory perception. Plos One 2, e943 

(2007). 

2. Shams, L. & Beierholm, U. R. Causal inference in perception. Trends Cogn. Sci. 14, 1–8 

(2010). 

3. Marr, D. Vision. (W. H. Freeman, 1982). 

4. Yuille, A. L. & Bulthoff, H. H. Bayesian decision theory and psychophysics. in Perception 

as Bayesian Inference (eds. Knill, D. C. & Richards, W.) (Cambridge University Press, 

1996). 

5. Yuille, A. L. & Clark, J. J. Bayesian models, deformable templates and competitive priors. 

in Proceedings of the 1991 York conference on Spacial vision in humans and robots 333–

347 (Cambridge University Press, 1994). 

6. Colas, F., Diard, J. & Bessière, P. Common Bayesian Models for Common Cognitive 

Issues. Acta Biotheor. 58, 191–216 (2010). 

7. Knill, D. C. Robust cue integration: A Bayesian model and evidence from cue-con ict 

studies with stereoscopic and gure cues to slant. J. Vis. 7, 1–24 (2007). 

8. Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human 

visual speed perception. Nat. Neurosci. 9, 578–585 (2006). 

9. Peters, M. A. K., Ma, W. J. & Shams, L. The Size-Weight Illusion is not anti-Bayesian 

after all: a unifying Bayesian account. PeerJ 4, e2124 (2016). 

10. Thurlow, W. R. & Jack, C. E. Certain determinants of the ventriloquism effect. 

Percept Mot Ski. 36, 1171–1184 (1973). 

11. Warren, D. H., Welch, R. B. & McCarthy, T. J. The role of visual-auditory 

‘compellingness’ in the ventriloquism effect: implications for transitivity among the spatial 

senses. Percept Psychophys 30, 557–564 (1981). 

12. Alais, D. & Burr, D. The Ventriloquist Effect Results from Near-Optimal Bimodal 



Integration. Curr. Biol. 14, 257–262 (2004). 

13. Slutsky, D. A. & Recanzone, G. H. Temporal and spatial dependency of the 

ventriloquism effect. Neuroreport 12, 7–10 (2001). 

14. Wallace, M. T. et al. Unifying multisensory signals across time and space. Exp. Brain 

Res. 158, (2004). 

15. Jack, C. E. & Thurlow, W. R. Effects of degree of visual association and angle of 

displacement on the ‘ventriloquism’ effect. Percept Mot Ski. 37, 967–979 (1973). 

16. Recanzone, G. H. Auditory influences on visual temporal rate perception. J 

Neurophysiol 89, 1078–1093 (2003). 

17. Choe, C. S., Welch, R. B., Gilford, R. M. & Juola, J. F. The ‘ventriloquist effect’: visual 

dominance or response bias. Percept Psychophys 18, 55–60 (1975). 

18. Bertelson, P., Vroomen, J., De Gelder, B. & Driver, J. The ventriloquist effect does 

not depend on the direction of deliberate visual attention. Percept. Psychophys. 62, 321–

332 (2000). 

19. Beierholm, U., Quartz, S. & Shams, L. Bayesian priors are encoded independently 

from likelihoods in human multisensory perception. J. Vis. 9, 1–9 (2009). 

20. Wozny, D. R., Beierholm, U. R. & Shams, L. Probability Matching as a Computational 

Strategy Used in Perception. PLoS Comput. Biol. 6, e1000871 (2010). 

21. Odegaard, B. & Shams, L. The Brain’s Tendency to Bind Audiovisual Signals Is 

Stable but Not General. Psychol. Sci. 27, 583–591 (2016). 

22. Odegaard, B., Wozny, D. R. & Shams, L. Biases in Visual, Auditory, and Audiovisual 

Perception of Space. PLOS Comput. Biol. 11, e1004649 (2015). 

23. Odegaard, B., Wozny, D. R. & Shams, L. The effects of selective and divided 

attention on sensory precision and integration. Neurosci. Lett. 614, 24–28 (2016). 

24. Rohe, T. & Noppeney, U. Sensory reliability shapes perceptual inference via two 

mechanisms. J. Vis. 15, 22 (2015). 

25. Beierholm, U., Rohe, T., Ferrari, A., Stegle, O. & Noppeney, U. Using the past to 

estimate sensory uncertainty. eLife 9, e54172 (2020). 



26. de Winkel, K. N., Katliar, M., Diers, D. & Bülthoff, H. H. Causal Inference in the 

Perception of Verticality. Sci. Rep. 8, 5483 (2018). 

27. Sato, Y., Toyoizumi, T. & Aihara, K. Bayesian Inference Explains Perception of Unity 

and Ventriloquism Aftereffect: Identification of Common Sources of Audiovisual Stimuli. 

Neural Comput. 19, 3335–3355 (2007). 

28. Hospedales, T. M. & Vijayakumar, S. Structure Inference for Bayesian Multisensory 

Scene Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2140–2157 (2008). 

29. Mohl, J. T., Pearson, J. M. & Groh, J. M. Monkeys and humans implement causal 

inference to simultaneously localize auditory and visual stimuli. J. Neurophysiol. 124, 

715–727 (2020). 

30. Odegaard, B., Beierholm, U. R., Carpenter, J. & Shams, L. Prior expectation of 

objects in space is dependent on the direction of gaze. Cognition 182, (2019). 

31. Jones, S. A., Beierholm, U., Meijer, D. & Noppeney, U. Older adults sacrifice 

response speed to preserve multisensory integration performance. Neurobiol. Aging 84, 

148–157 (2019). 

32. Wozny, D. R. & Shams, L. Computational Characterization of Visually Induced 

Auditory Spatial Adaptation. Front. Integr. Neurosci. 5, (2011). 

33. Shams, L., Ma, W. J. W. J. & Beierholm, U. Sound-induced flash illusion as an 

optimal percept. Neuroreport 16, 1923–7 (2005). 

34. Shams, L., Kamitani, Y. & Shimojo, S. What you see is what you hear. Nature 408, 

788–788 (2000). 

35. Shams, L., Kamitani, Y. & Shimojo, S. Visual illusion induced by sound. Cogn. Brain 

Res. 14, 147–152 (2002). 

36. Beierholm, U. R. Bayesian Modeling of Sensory Cue Combinations. (California 

Institute of Technology, 2007). doi:10.7907/K89B-XW75. 

37. Wozny, D. R., Beierholm, U. R. & Shams, L. Human trimodal perception follows 

optimal statistical inference. J. Vis. 8, 24 (2008). 

38. Bresciani, J.-P. P., Dammeier, F. & Ernst, M. O. Vision and touch are automatically 



integrated for the perception of sequences of events. J Vis 6, 554–564 (2006). 

39. Roach, N. W., Heron, J. & McGraw, P. V. Resolving multisensory conflict: a strategy 

for balancing the costs and benefits of audio-visual integration. Proc. R. Soc. B Biol. Sci. 

273, 2159–2168 (2006). 

40. Cao, Y., Summerfield, C., Park, H., Giordano, B. L. & Kayser, C. Causal Inference in 

the Multisensory Brain. Neuron 102, 1076-1087.e8 (2019). 

41. Ito, Y. et al. Auditory-induced visual illusions in rodents measured by spontaneous 

behavioural response. Sci. Rep. 9, 19211 (2019). 

42. Magnotti, J. F., Ma, W. J. & Beauchamp, M. S. Causal inference of asynchronous 

audiovisual speech. Front. Psychol. 4, (2013). 

43. Sawai, K., Sato, Y. & Aihara, K. Auditory Time-Interval Perception as Causal 

Inference on Sound Sources. Front. Psychol. 3, (2012). 

44. Clark, J. J. & Yuille, A. L. Data fusion for sensory information processing systems. 

(Boston: Kluwer Academic Pulishers, 1990). 

45. Lu, H., Lin, T., Lee, A., Vese, L. & Yuille, A. Recovering the functional form of the 

slow-and-smooth prior in global motion perception. J. Vis. 10, 819–819 (2010). 

46. Charpentier, A. Analyse experimentale: De quelques elements de la sensation de 

poids [Experimental study of some aspects of weight perception]. Arch Physiol Norm 

Pathol 3, 122–135 (1891). 

47. Koseleff, P. Studies in the perception of heaviness. I.1.2: Some relevant facts 

concerning the size-weight-effect (SWE). Acta Psychol. (Amst.) 13, 242–252 (1957). 

48. Ernst, M. O. Perceptual Learning: Inverting the Size–Weight Illusion. Curr. Biol. 19, 

R23–R25 (2009). 

49. Brayanov, J. B. & Smith, M. A. Bayesian and “Anti-Bayesian” Biases in Sensory 

Integration for Action and Perception in the Size–Weight Illusion. J. Neurophysiol. 103, 

1518–1531 (2010). 

50. Harshfield, S. P. & DeHardt, D. C. Weight judgment as a function of apparent density 

of objects. Psychon. Sci. 20, 365–366 (1970). 



51. Peters, M. A. K., Zhang, L.-Q. & Shams, L. The material-weight illusion is a Bayes-

optimal percept under competing density priors. PeerJ 6, e5760 (2018). 

52. Botvinick, M. & Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 391, 756–

756 (1998). 

53. Petkova, V. I. & Ehrsson, H. H. If I Were You: Perceptual Illusion of Body Swapping. 

PLOS ONE 3, e3832 (2008). 

54. Ehrsson, H. H. The experimental induction of out-of-body experiences. Science 317, 

1048 (2007). 

55. Lenggenhager, B., Tadi, T., Metzinger, T. & Blanke, O. Video ergo sum: manipulating 

bodily self-consciousness. Science 317, 1096–1099 (2007). 

56. Hoort, B. van der, Guterstam, A. & Ehrsson, H. H. Being Barbie: The Size of One’s 

Own Body Determines the Perceived Size of the World. PLOS ONE 6, e20195 (2011). 

57. Tsakiris, M. & Haggard, P. The rubber hand illusion revisited: visuotactile integration 

and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 31, 80–91 (2005). 

58. Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body 

perceptions. Nature 419, 269–270 (2002). 

59. Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. 

Neurosci. 13, 556–571 (2012). 

60. Ehrsson, H. H., Spence, C. & Passingham, R. E. That’s my hand! Activity in premotor 

cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004). 

61. Samad, M., Chung, A. J. & Shams, L. Perception of Body Ownership Is Driven by 

Bayesian Sensory Inference. PLOS ONE 10, e0117178 (2015). 

62. Lloyd, D. M. Spatial limits on referred touch to an alien limb may reflect boundaries of 

visuo-tactile peripersonal space surrounding the hand. Brain Cogn. 64, 104–109 (2007). 

63. Schürmann, T., Vogt, J., Christ, O. & Beckerle, P. The Bayesian causal inference 

model benefits from an informed prior to predict proprioceptive drift in the rubber foot 

illusion. Cogn. Process. 20, 447–457 (2019). 

64. Kilteni, K., Maselli, A., Kording, K. P. & Slater, M. Over my fake body: body 



ownership illusions for studying the multisensory basis of own-body perception. Front. 

Hum. Neurosci. 9, (2015). 

65. Legaspi, R. & Toyoizumi, T. A Bayesian psychophysics model of sense of agency. 

Nat. Commun. 10, 4250 (2019). 

66. Fang, W. et al. Statistical inference of body representation in the macaque brain. 

Proc. Natl. Acad. Sci. 116, 20151–20157 (2019). 

67. Dokka, K., Kenyon, R. V., Keshner, E. A. & Kording, K. P. Self versus Environment 

Motion in Postural Control. PLoS Comput. Biol. 6, e1000680 (2010). 

68. Atsma, J., Maij, F., Koppen, M., Irwin, D. E. & Medendorp, W. P. Causal Inference for 

Spatial Constancy across Saccades. PLOS Comput. Biol. 12, e1004766 (2016). 

69. Jeannerod, M. Action Monitoring and Forward Control of Movements. in The 

Handbook of Brain Theory and Neural Networks 83–85 (MIT Press Cambridge, MA, 

2003). 

70. Perdreau, F., Cooke, J. R. H., Koppen, M. & Medendorp, W. P. Causal inference for 

spatial constancy across whole body motion. J. Neurophysiol. 121, 269–284 (2018). 

71. de Winkel, K. N., Katliar, M. & Bülthoff, H. H. Causal Inference in Multisensory 

Heading Estimation. PLOS ONE 12, e0169676 (2017). 

72. Acerbi, L., Dokka, K., Angelaki, D. E. & Ma, W. J. Bayesian comparison of explicit 

and implicit causal inference strategies in multisensory heading perception. PLOS 

Comput. Biol. 14, e1006110 (2018). 

73. Dokka, K., Park, H., Jansen, M., DeAngelis, G. C. & Angelaki, D. E. Causal inference 

accounts for heading perception in the presence of object motion. Proc. Natl. Acad. Sci. 

116, 9060–9065 (2019). 

74. Wei, K. & Körding, K. Relevance of error: what drives motor adaptation? J. 

Neurophysiol. 101, 655–64 (2009). 

75. Berniker, M. & Kording, K. Estimating the sources of motor errors for adaptation and 

generalization. Nat. Neurosci. 11, 1454–1461 (2008). 

76. Wei, K. & Kording, K. Causal Inference in Sensorimotor Learning and Control. Sens. 



Cue Integr. (2012) doi:10.1093/acprof:oso/9780195387247.003.0002. 

77. Knill, D. C. C. Mixture models and the probabilistic structure of depth cues. Vis. Res 

43, 831–854 (2003). 

78. Girshick, A. R. & Banks, M. S. Probabilistic combination of slant information: 

Weighted averaging and robustness as optimal percepts. J. Vis. 9, 8–8 (2009). 

79. Hospedales, T. & Vijayakumar, S. Multisensory Oddity Detection as Bayesian 

Inference. PLoS ONE 4, e4205 (2009). 

80. Magnotti, J. F. & Beauchamp, M. S. A Causal Inference Model Explains Perception 

of the McGurk Effect and Other Incongruent Audiovisual Speech. PLOS Comput. Biol. 13, 

e1005229 (2017). 

81. Magnotti, J. F. et al. A causal inference explanation for enhancement of multisensory 

integration by co-articulation. Sci. Rep. 8, 18032 (2018). 

82. Magnotti, J. F., Dzeda, K. B., Wegner-Clemens, K., Rennig, J. & Beauchamp, M. S. 

Weak observer–level correlation and strong stimulus-level correlation between the 

McGurk effect and audiovisual speech-in-noise: A causal inference explanation. Cortex 

133, 371–383 (2020). 

83. Kleinschmidt, D. F. & Jaeger, T. F. Robust speech perception: Recognize the 

familiar, generalize to the similar, and adapt to the novel. Psychol. Rev. 122, 148–203 

(2015). 

84. Shettleworth, S. J. & Sutton, J. E. Multiple systems for spatial learning: dead 

reckoning and beacon homing in rats. J. Exp. Psychol. Anim. Behav. Process. 31, 125–

141 (2005). 

85. Etienne, A. S., Teroni, E., Hurni, C. & Portenier, V. The effect of a single light cue on 

homing behaviour of the golden hamster. Anim. Behav. 39, 17–41 (1990). 

86. Badde, S., Navarro, K. T. & Landy, M. S. Modality-specific attention attenuates 

visual-tactile integration and recalibration effects by reducing prior expectations of a 

common source for vision and touch. Cognition 197, 104170 (2020). 

87. Odegaard, B., Wozny, D. R. & Shams, L. A simple and efficient method to enhance 



audiovisual binding tendencies. PeerJ 5, e3143 (2017). 

88. McGovern, D. P., Roudaia, E., Newell, F. N. & Roach, N. W. Perceptual learning 

shapes multisensory causal inference via two distinct mechanisms. Sci. Rep. 6, 24673 

(2016). 

89. Rohe, T. & Noppeney, U. Cortical Hierarchies Perform Bayesian Causal Inference in 

Multisensory Perception. PLOS Biol. 13, e1002073 (2015). 

90. Rohe, T., Ehlis, A.-C. & Noppeney, U. The neural dynamics of hierarchical Bayesian 

causal inference in multisensory perception. Nat. Commun. 10, 1907 (2019). 

91. Cuppini, C., Shams, L., Magosso, E. & Ursino, M. A biologically inspired 

neurocomputational model for audiovisual integration and causal inference. Eur. J. 

Neurosci. 46, 2481–2498 (2017). 

92. Zhang, W.-H. et al. Complementary congruent and opposite neurons achieve 

concurrent multisensory integration and segregation. eLife 8, e43753 (2019). 

93. Aller, M. & Noppeney, U. To integrate or not to integrate: Temporal dynamics of 

hierarchical Bayesian causal inference. PLOS Biol. 17, e3000210 (2019). 

94. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human 

visual perception: Testing Bayesian transfer. Vis. Neurosci. 26, 147–155 (2009). 

95. Beck, J. M. et al. Probabilistic Population Codes for Bayesian Decision Making. 

Neuron 60, 1142–1152 (2008). 

96. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with 

probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006). 

97. Lochmann, T. & Deneve, S. Neural processing as causal inference. Curr. Opin. 

Neurobiol. 21, 774–781 (2011). 

98. Ma, W. J. & Rahmati, M. Towards a Neural Implementation of Causal Inference in 

Cue Combination. Multisensory Res. 26, 159–176 (2013). 

99. Yamashita, I., Katahira, K., Igarashi, Y., Okanoya, K. & Okada, M. Recurrent network 

for multisensory integration-identification of common sources of audiovisual stimuli. Front. 

Comput. Neurosci. 7, (2013). 



100. Yu, Z., Chen, F., Dong, J. & Dai, Q. Sampling-based causal inference in cue 

combination and its neural implementation. Neurocomputing 175, 155–165 (2016). 

101. Shi, L. & Griffiths, T. Neural implementation of hierarchical Bayesian inference by 

importance sampling. Adv. Neural Inf. Process. Syst. 22 1669–1677 (2009). 

102. Zhang, W., Wu, S., Doiron, B. & Lee, T. S. A Normative Theory for Causal Inference 

and Bayes Factor Computation in Neural Circuits. Adv. Neural Inf. Process. Syst. 32, 

3804–3813 (2019). 

103. Fang, Y., Yu, Z., Liu, J. K. & Chen, F. A unified neural circuit of causal inference and 

multisensory integration. Neurocomputing 358, 355–368 (2019). 

104. Gorini, R. Al-Haytham the man of experience: First Steps in the Science of Vision. J 

Inter Soc Hist. Islam. Med. 2, 53–55 (2003). 

105. Toomer, G. J. Review of Ibn al-Haythams Weg zur Physik. Isis J. Hist. Sci. Soc. 55, 

463–465 (1964). 

106. Yates, T., Larigaldie, N. & Beierholm, U. A non-parametric Bayesian prior for causal 

inference of auditory streaming. in Proceedings of the 39th Annual Conference of the 

Cognitive Science Society 1381–1386 (2017). 

107. Sanborn, A. N. & Chater, N. Bayesian Brains without Probabilities. Trends Cogn. Sci. 

20, 883–893 (2016). 


