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Abstract

In the present paper, we study nonlinear approximation properties of multivariate wavelet bi-
frames. For a certain range of parameters, the approximation classes associated with best N -
term approximation are determined to be Besov spaces and thresholding the wavelet bi-frame
expansion realizes the approximation rate. Our findings extend results about dyadic wavelets
to more general scalings. Finally, we verify that the required linear independence assumption is
satisfied for particular families of nondyadic wavelet bi-frames in arbitrary dimensions.
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1 Introduction

Almost any kind of application requires at least to a certain extent the analysis of data. Depending
on the specific application, the collection of data is usually called a measurement, a signal, or an
image. In a mathematical framework, all of these objects are represented as functions. In order to
analyze them, they are decomposed into simple building blocks. Such methods are not only used
in mathematics, but also in physics, electrical engeneering, and medical imaging.

The building blocks also provide a series expansion, which reconstructs the original function.
In computational algorithms, the series has to be replaced by a finite sum. Hence, we must
approximate from N terms. There arise two fundamental problems, which have to be solved.
First, let the approximation class essentially collect all functions, whose best choice of N terms
yields a specific rate of approximation. It is important to express the approximation class in terms
of classical function spaces since the class serves as a benchmark in order to evaluate different
selections of N terms. Second, in practical algorithms, we require a realization of the best N -term
approximation, i.e., we must look for a simple rule of the selection of N particular terms such that
they provide the same rate of approximation as the best N -term approximation.

In wavelet theory, one approximates functions from dilates and shifts. For dyadic orthonormal
wavelets, at least up to a certain rate, the approximation class equals a Besov space and thresh-
olding the coefficients of the series expansion realizes the best N -term approximation, cf. [6, 12].
The results require certain smoothness and vanishing moments of the wavelets as well as a linear
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independence condition on the underlying refinable function. In [26], Lindemann generalized the
dyadic results regarding biorthogonal wavelet bases with isotropic dilation. Borup, Gribonval, and
Nielsen address wavelet bi-frames in [1]. However, their results are restricted to dyadic dilation.
The present work is dedicated to an extension to more general scalings.

In order to characterize the approximation class, one has to establish so-called matching Jackson
and Bernstein inequalities. They imply that the approximation space equals a so-called interpo-
lation space. Fortunately, interpolation is well-studied, and, in many particular situations, these
classes can be identified with classical smoothness spaces, which yields the final characterization of
the approximation class.

In order to derive the Jackson inequality, we require the characterization of Besov spaces by
wavelet bi-frames, i.e., the Besov semi-norm must be equivalently expressed in terms of a sequence
norm of wavelet bi-frame coefficients. The characterization of Besov spaces by dyadic orthonormal
wavelet bases was derived by DeVore, Jawerth, and Popov in the early nineties, cf. [13]. Lindemann
extended the characterization to pairs of biorthogonal wavelet bases with general isotropic scalings,
see [26]. Recently, Borup, Gribonval, and Nielsen characterized Besov spaces by dyadic wavelet
bi-frames, cf. [1]. To point out the difficulties of the extension to wavelet bi-frames with general
isotropic scalings, we shall explain the main idea of the dyadic bi-frame approach. Initially, one
chooses a dyadic orthonormal basis characterizing the Besov space. Recall that the characterization
requires a sufficient order of smoothness, and one can choose a tensor product of Meyer wavelets or
of sufficiently smooth Daubechies wavelets, cf. [8]. Then one applies a certain localization technique,
i.e., the bi-frame is localized to the dyadic orthonormal wavelet basis such that the orthonormal
characterization carries over to the wavelet bi-frame. Hence, the orthonormal basis plays the role
of a reference system. In order to address general isotropic scalings, there arise two problems.
First, for many isotropic dilation matrices, it is not clear whether there exist smooth compactly
supported orthogonal wavelets. Hence, we need another reference system. Since, for most of the
known dilation matrices, there exist smooth compactly supported biorthogonal wavelets, see for
instance [11, 22], they constitute promising substitutes for the orthogonal wavelet basis. Second,
we have to extend the localization technique from dyadic to isotropic dilation as well as from
orthogonal to biorthogonal reference systems.

The Jackson inequality results from the Besov space characterization. In order to address the
Bernstein inequality, we restrict us to so-called idempotent scalings, see Subsection 2.2. As in
the dyadic setting, the underlying refinable function must have linearly independent integer shifts
on (0, 1)d. Finally, the approximation classes of wavelet bi-frames with idempotent scalings are
interpolation spaces. Since, for certain parameters, the arising interpolation spaces coincide with
Besov spaces, we solve the first fundamental problem mentioned above. Facing the second problem,
we derive that the best N -term approximation rate can be realized by thresholding the wavelet
bi-frame expansion. Contrary to [1], we can allow for arbitrary thresholding rules.

It should be mentioned that the limitation to idempotent scalings is not too restrive since most
wavelet bi-frames in the literature are included. In the remainder of the work, we verify that
the nondyadic families of optimal wavelet bi-frames in arbitary dimensions with arbitrarily high
smoothness and vanishing moments in [15, 16] satisfy the assumptions of the Jackson and Bernstein
inequalities.

The present paper is organized as follows: In Section 2, we recall the basic elements of best N -
term approximation in Banach space as well as wavelet bi-frames with respect to general scalings.
In Section 3, we verify that the Besov semi-norm is equivalent to a sequence norm of wavelet bi-
frame coefficients. The Jackson and Bernstein inequalities are established in Section 4, and Section
5 is dedicated to the realization of the best N -term approximation rate by applying arbitrary
thresholding rules. Finally, in Section 6, we verify that particular families of nondyadic wavelet
bi-frames in [15, 16] satisfy the assumptions of the Jackson and Bernstein estimates.
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2 General Setting

2.1 Best N-Term Approximation

Let X be a Banach space. A countable collection D ⊂ X is called a dictionary if its elements are
normalized in the sense of ‖g‖X ∼ 1, for all g ∈ D. Then let ΣN (D) be the collection of all linear
combinations of at most N elements of D. For any given f ∈ X,

σN (f,D)X := dist(f,ΣN (D))X

is called the error of best N -term approximation. In order to approximate elements in X from
ΣN (D), it is important to determine those f ∈ X providing the approximation rate α, i.e.,

σN (f,D)X . N−α, for all N ∈ N,

where the constant may depend on f . This question leads to the following definition. For 0 < s <

∞, 0 < q ≤ ∞, the approximation class As
q(X,D) is the collection of all f ∈ X such that

|f |As
q(X,D) :=

{(∑∞
N=1 (N sσN (f,D)X)q 1

N

) 1

q , for 0 < q <∞,

supN≥1(N
sσN (f,D)X), for q = ∞,

is finite. If we choose q = ∞, then the space As
∞(X,D) precisely consists of all f in X having

approximation rate s. For 0 < q <∞, membership in As
q(X,D) means a slightly stronger condition,

see Chapter 7 in [14].
In order to determine the approximation class, the real method of interpolation is a valuable

tool. The following so-called Jackson and Bernstein estimates provide the connection between
approximation and interpolation, cf. [12] and Chapter 7 in [14]. Given 0 < s < ∞ and a Banach
space X, let Y be continuously embedded in X. If the Jackson inequality

σN (f,D)X . N−s|f |Y , for all f ∈ Y , N ∈ N,

holds, then the real interpolation space [X,Y ]α
s

,q is contained in Aα
q (X,D), for all 0 < α < s and

0 < q ≤ ∞. If the Bernstein inequality

|f |Y . N s‖f‖X , for all f ∈ ΣN(D), N ∈ N,

holds, then Aα
q (X,D) ⊂ [X,Y ]α

s
,q, for 0 < α < s and 0 < q ≤ ∞.

In order to determine the approximation class, one has to establishing matching Jackson and
Bernstein estimates. Then the approximation class equals an interpolation space, and in a next
step, one has to describe the interpolation class by classical function spaces.

2.2 Wavelet Bi-Frames

Given a countable index set K, a collection {fκ : κ ∈ K} in a Hilbert space H is called a frame for
H if there exist two positive constants A, B such that

A‖f‖2
H ≤ ‖(〈f, fκ〉)κ∈K‖

2
ℓ2

≤ B‖f‖2
H, for all f ∈ H.

The collection {fκ : κ ∈ K} is a frame for H iff its synthesis operator

F : ℓ2(K) → H, (cκ)κ∈K 7→
∑

κ∈K

cκfκ,
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is well-defined and onto, see Section 5.5 in [5]. Hence, each f ∈ H has a series expansion in the
frame. In order to derive the coefficients of such an expansion, one considers the frame operator

S := FF ∗. It is positive and boundedly invertible, and the system {S−1fκ : κ ∈ K} is called the
canonical dual frame. It is a frame, and it provides the expansion

f =
∑

κ∈K

〈
f, S−1fκ

〉
fκ, for all f ∈ H, (1)

cf. Chapter 5 in [5].
In order to address wavelet frames, we shall clarify our concept of dilation. Throughout this

paper, let M denote a dilation matrix, i.e., an integer matrix, whose eigenvalues are greater than
one in modulus. For ψ : R

d → C, let

ψj,k(x) := m
j

2ψ(M jx− k), for j ∈ Z, k ∈ Z
d,

where m := |det(M)| throughout. Given a finite number of L2(R
d)-functions ψ(1), . . . , ψ(n), the

collection
X({ψ(1), . . . , ψ(n)}) :=

{
ψ

(µ)
j,k : j ∈ Z, k ∈ Z

d, µ = 1, . . . , n
}

(2)

is called a wavelet frame if it constitutes a frame for L2(R
d). Unfortunately, its canonical dual frame

may not have the wavelet structure as well. Nevertheless, the canonical dual in (1) can possibly be
replaced by an alternative dual wavelet frame. This motivates the following definition. Two frames
{fκ : κ ∈ K} and {f̃κ : κ ∈ K} for H are called a bi-frame if the expansion

f =
∑

κ∈K

〈
f, f̃κ

〉
fκ

holds for every f ∈ H. We speak of a wavelet bi-frame if two systems as in (2) constitute a bi-frame
for L2(R

d).
Compactly supported wavelets are generally derived from two compactly supported refinable

functions ϕ and ϕ̃, i.e., there exist finitely supported sequence
(
ak

)
k∈Zd and

(
bk
)
k∈Zd such that

ϕ(x) =
∑

k∈Z

akϕ(Mx− k), ϕ̃(x) =
∑

k∈Z

bkϕ̃(Mx− k). (3)

Next, one must find finitely supported sequences
(
a

(µ)
k

)
k∈Zd and

(
b
(µ)
k

)
k∈Zd , µ = 1, . . . , n, such that

ψ(µ)(x) =
∑

k∈Zd

a
(µ)
k ϕ(Mx− k), ψ̃(µ)(x) =

∑

k∈Zd

b
(µ)
k ϕ̃(Mx− k), (4)

generate a wavelet bi-frame, see [8, 9] for details.
A wavelet frame induced by a refinable function requires at least m − 1 wavelets. Hence, we

need 2d − 1 wavelets for dyadic scalings M = 2Id. In order to reduce the number of wavelets, one
considers nondyadic scalings. For instance, for d = 2, 3, let

M =

(
−1 1
1 1

)
, M =




0 2 1
−1 −1 0
1 1 1


 , (5)

and, for d > 3, let

M =




0 2 1 . . . . . . . 1
...

. . . 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . . 0 1 0
−1 . . . . . . . . . . . . −1 0
1 . . . . . . . . . . . . . . . . . 1




. (6)
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These are dilation matrices with m = 2 in arbitrary dimensions. Next, we introduce two subclasses
of scalings. A dilation matrix is called isotropic if it can be diagonalized and all eigenvalues
have the same modulus. This class is mainly addressed in Section 3. A dilation matrix is called
idempotent if there are l, h ∈ N such that M l = hId. Idempotent dilation matrices are of main
interest in Subsection 4.2. One easily verifies that their minimum polynomial has pairwise distinct
zeros. Hence, they can be diagonalized, see a standard textbook on linear algebra. Therefore, each
idempotent dilation matrix is isotropic. Note that M in (5) and (6) is idempotent with Md = 2Id.

3 Characterization of Besov Spaces by Wavelet Bi-Frames

Biorthogonal wavelet bases characterize Besov spaces, see [13] for dyadic scaling and [3, 17, 26] for
the extension to isotropic dilation matrices. In this section, we establish the equivalence between
the Besov semi-norm and a sequence norm of wavelet bi-frame coefficients. We extend the dyadic
results in [1] to the more general class of isotropic scalings. In order to derive the equivalence,
we apply the concept of localization: in a series of papers, Gröchenig considers localized frames,
i.e., frames, whose Gramian matrices have certain decay outside the diagonal, see [20, 21]. In
some sense, we follow these ideas. We also address Gramian type matrices, and we estimate the
decay of their entries outside the diagonal. However, we apply localization to two different frames,
i.e., we consider their mixed Gramian matrices. Finally, we establish that the mixed Gramian
matrix of bi-frame wavelets and biorthogonal wavelets constitutes a bounded operator on certain
sequence spaces. Then by applying some results about wavelet bi-frame expansions in Lp(R

d), the
biorthogonal characterization carries over to the bi-frame.

3.1 A Characterization by Biorthogonal Wavelet Bases

Since we will study approximation in Lp(R
d), 1 < p <∞, let

ψ
(µ),p
j,k (x) := m

j

pψ(µ)(M jx− k), for j ∈ Z, k ∈ Z
d, x ∈ R

d,

denote the Lp(R
d)-normalization of ψ

(µ)
j,k , and let us use the short-hand notation ψ

p
λ = ψ

p
µ,j,k :=

ψ
(µ),p
j,k ,where λ = (µ, j, k) and Λ := {1, . . . ,m− 1}×Z×Z

d. We do so for the dual wavelets as well.
Moreover, we say a function ψ has s vanishing moments if

∫

Rd

xαψ(x)dx = 0, for all |α| < s.

For fixed 1 < p <∞, we write Bs for the Besov space Bs
τ (Lτ (Rd)), where 1

τ
= s

d
+ 1

p
. These spaces

arise in the context of nonlinear approximation as described in Section 4, see also [12]. Let us recall
the characterization of Besov spaces by biorthogonal wavelets. Given an isotropic dilation matrix
M , let 1 < p <∞, 1

p
+ 1

p′
= 1, and suppose that X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)}) are

a pair of compactly supported biorthogonal wavelet bases, whose underlying refinable functions ϕ
and ϕ̃ are contained in Lp(R

d) and Lp′(R
d), respectively. Let ϕ be also contained in W s(L∞(Rd)),

s ∈ N. Then, for all 0 < α < s and f ∈ Bα, the series expansion

f =
∑

λ∈Λ

〈
f, ψ̃

p′

λ

〉
ψ

p
λ (7)

holds in Lp(R
d), and

|f |Bα ∼
∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ
, for 1

τ
= α

d
+ 1

p
, (8)

see [3, 17, 26] for details.
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3.2 Localization Technique

Given two frames {fκ : κ ∈ K}, {gκ′ : κ′ ∈ K′} for H, their synthesis operators F and G,
respectively, are bounded. Thus, G∗F is a bounded operator on ℓ2(K). It coincides with the mixed
Gramian matrix operator

(cκ)κ∈K 7→
(∑

κ∈K

〈fκ, gκ′〉 cκ
)

κ′∈K′

.

The following theorem shows that, for wavelet systems, the mixed Gramian is bounded on a large
scale of ℓτ -spaces. It is our main result of this section, and it extends the dyadic results in [1] to
general isotropic scalings. Note that we do not assume strong differentiability as they do in [1]. We
only require weak differentiability.

Theorem 3.1. Let M be isotropic and s, s′ ∈ N. For µ ∈ E := {1, . . . , n} and µ′ ∈ E′ :=
{1, . . . , n′}, let compactly supported functions f (µ) ∈ W s(L∞(Rd)) and g(µ′) ∈ W s′(L∞(Rd))
have s′ and s vanishing moments, respectively. Given 1 ≤ p < ∞ and 1 = 1

p
+ 1

p′
, we consider the

matrix operator

T : (cλ)λ∈Λ 7→
(∑

λ∈Λ

〈
f

p
λ , g

p′

λ′

〉
cλ

)
λ′∈Λ′

,

where Λ = E ×Z×Z
d and Λ′ = E′ ×Z×Z

d. Then T : ℓτ (Λ) → ℓτ (Λ
′) is bounded for any τ in the

range

p
(

s′

d
+ 1
)
> τ >





(
s
d

+ 1
p

)−1
, for s

d
+ 1

p
≥ 1,

p
(
1 − s

d

)
, for s

d
+ 1

p
≤ 1.

(9)

Later, we only consider p ≥ τ . Therefore, the exact upper bound of τ in Theorem 3.1 is of minor
interest. The lower bound is critical, and it will yield a restriction. Unfortunately, it cannot be
improved in general, see [1] for a counterexample.

The proof of Theorem 3.1 keeps us busy for the remainder of the present subsection. One of the
two fundamental ingredients is the following lemma. It extends the dyadic Lemma 8.10 in [27] also
allowing for isotropic dilation matrices.

Lemma 3.2. Let M be isotropic, and let d < δ. For j ∈ Z, consider the matrix operator Tj given

by

(dk)k∈Zd 7→





(∑
k∈Zd

(
1 +

∥∥k −M−jk′
∥∥)−δ

dk

)
k′∈Zd

, for j > 0,
(∑

k∈Zd

(
1 + ‖M jk − k′‖

)−δ
dk

)
k′∈Zd

, for j ≤ 0.

Then, Tj is bounded on ℓτ (Z
d), for any 1 ≤ τ ≤ ∞, and its operator norm satisfies

‖Tj‖ℓτ→ℓτ
.

{
m

j

τ , j > 0,

m− j

τ ′ , j ≤ 0, where 1
τ

+ 1
τ ′ = 1.

Proof. First, we address j ≤ 0, and we consider τ = 1 and τ = ∞. For 1 < τ < ∞, we apply the
Riesz-Thorin Interpolation Theorem. Let us choose τ = 1. In order to derive

‖Tj‖ℓ1→ℓ1 . 1, (10)

we split M jk into the sum l + r with ‖r‖∞ < 1, where ‖r‖∞ denotes the maximum norm on R
d.

This yields
∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd

(1 + ‖l + r − k′‖∞)−δ

=
∑

k′∈Zd

(1 + ‖r − k′‖∞)−δ.
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Applying the reverse triangle inequality |‖r‖∞ − ‖k′‖∞| ≤ ‖r − k′‖∞ provides

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd

(
1 +

∣∣‖r‖∞ − ‖k′‖∞
∣∣)−δ

.

Since ‖r‖∞ < 1 and d < δ, we obtain

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd\{0}

(‖k′‖∞)−δ + 1 . 1.

For (dk)k∈Zd ∈ ℓ1(Z
d), this yields

∥∥Tj

(
(dk)k∈Zd

)∥∥
ℓ1

=
∑

k′∈Zd

∣∣∣
∑

k∈Zd

(1 + ‖M jk − k′‖)−δdk

∣∣∣

≤
∑

k∈Zd

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ |dk|

.
∥∥(dk)k∈Zd

∥∥
ℓ1
.

Thus, (10) holds.
Now, let us address τ = ∞. In the following, we verify

‖Tj‖ℓ∞→ℓ∞ . m−j. (11)

This requires the introduction of a special norm: for isotropic dilation matrices M , there exists a
norm ‖ · ‖M on R

d such that

‖Mx‖M = ρ‖x‖M , for all x ∈ R
d, (12)

where ρ is the modulus of the eigenvalues of M , cf. [24]. Since all norms on R
d are equivalent, this

leads to

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ .
∑

k∈Zd

mj(1 + ‖M jk − k′‖M )−δ

=
∑

k∈Zd

mj(1 + ‖M j(k −M−jk′)‖M )−δ.

Due to j ≤ 0, we have M−jk′ ∈ Z
d. This provides with mj = ρjd

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ =
∑

k∈Zd

mj(1 + ‖M jk‖M )−δ

.
∑

k∈Zd

ρjd(1 + ‖ρjk‖)−δ.

Since the last term is a Riemann sum of the integrable function x 7→ (1 + ‖x‖)−δ , we obtain

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ . 1.
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For (dk)k∈Zd ∈ ℓ∞(Zd), the Cauchy-Schwartz inequality and the last estimate imply

∥∥Tj

(
(dk)k∈Zd

)∥∥
ℓ∞→ℓ∞

= sup
k′∈Zd

∣∣∣
∑

k∈Zd

(1 + ‖M jk − k′‖)−δdk

∣∣∣

≤ m−j sup
k′∈Zd

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ |dk|

= m−j sup
k′∈Zd

∥∥(mj(1 + ‖M jk − k′‖)−δdk

)
k∈Zd

∥∥
ℓ1

≤ m−j sup
k′∈Zd

∥∥(mj(1 + ‖M jk − k′‖)−δ
)
k∈Zd

∥∥
ℓ1

∥∥(dk)k∈Zd

∥∥
ℓ∞

. m−j
∥∥(dk)k∈Zd

∥∥
ℓ∞
.

Thus, (11) holds.
By applying the Riesz-Thorin Interpolation Theorem to (10) and (11), we obtain, for all 1 ≤ τ ≤

∞,

‖Tj‖ℓτ→ℓτ
. m− j

τ ′ , where 1
τ

+ 1
τ ′ = 1.

In order to address j > 0, we observe that, for 1 ≤ τ < ∞, the operator T−j : ℓτ ′ → ℓτ ′ is the
dual matrix operator of Tj : ℓτ → ℓτ . Thus,

‖Tj‖ℓτ→ℓτ
= ‖T−j‖ℓτ ′→ℓτ ′

. m
j

τ .

Since Tj : ℓ∞ → ℓ∞ is the dual of T−j : ℓ1 → ℓ1, this inequality still holds for τ = ∞, which
concludes the proof.

By following the lines of the proof in [1], Lemma 3.2 implies the next Proposition.

Proposition 3.3. Let M be isotropic, and let 1 ≤ p < ∞, δ > d, and s, s′ ∈ N. Then the matrix

operator

(cj,k)j,k 7→

(
∑

k∈Zd,
j≤j′

m
(j−j′)

“

s
d
+ 1

p

”

cj,k

(1 + ‖k −M j−j′k′‖)
δ

+
∑

k∈Zd,
j>j′

m
(j′−j)

“

s′

d
+ 1

p′

”

cj,k

(1 + ‖k′ −M j′−jk‖)
δ

)

j′,k′

is bounded on ℓτ (Z × Z
d), for

p
(

s′

d
+ 1
)
> τ >





d
δ
, for s

d
+ 1

p
≥ δ

d
,(

s
d

+ 1
p

)−1
, for 1 < s

d
+ 1

p
≤ δ

d
,

p(1 − s
d
), for s

d
+ 1

p
≤ 1.

The second fundamental ingredient for the proof of Theorem 3.1 is the following version of the
Bramble-Hilbert Lemma, see [10]. Let Πs−1 denote the space of all polynomials of degree up to
s− 1:

Theorem 3.4. Given Ω ⊂ R
d convex, s ∈ N, and 1 ≤ p ≤ ∞, let f ∈ W s(Lp(Ω)). Then there

exists a polynomial q ∈ Πs−1 such that

|f − q|W l(Lp(Ω)) . diam(Ω)s−l|f |W s(Lp(Ω)), l = 0, . . . , s,

where

|f |W s(Lp) :=
∑

|β|=s

‖∂βf‖Lp

denotes the Sobolev semi-norm of order s.
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The following proposition results by combining Proposition 3.3 with Theorem 3.4.

Proposition 3.5. Let M be isotropic, s, s′ ∈ N, and suppose that compactly supported functions

f ∈ W s(L∞(Rd)) and g ∈ W s′(L∞(Rd)) have s′ and s vanishing moments, respectively. Given

1 ≤ p <∞ and 1 = 1
p

+ 1
p′

, we consider the matrix operator

T : (cj,k)j,k 7→
( ∑

j∈Z,k∈Zd

〈
f

p
j,k, g

p′

j′,k′

〉
cj,k

)
j′,k′

.

Then T is bounded on ℓτ (Z × Zd) for any τ as in (9).

Proof. Fix δ > d sufficiently large. First, we address j′ ≥ j. Let R > 0 such that

supp(g) ⊂ G := {x ∈ R
d : ‖x‖M ≤ R},

where ‖ · ‖M denotes the norm in (12). Then G is convex and M j−j′G ⊂ G. According to the
vanishing moments and the Hölder inequality, we obtain

∣∣∣
〈
f

p
j,k, g

p′

j′,k′

〉∣∣∣ = m
j

pm
j′

p′

∫

Rd

f(M j−j′x+M j−j′k′ − k)g(x)m−j′dx

= m
(j−j′) 1

p inf
q∈Πs−1

∫

G

(
f(M j−j′x+M j−j′k′ − k) − q(x)

)
g(x)dx

≤ m
(j−j′) 1

p inf
q∈Πs−1

∥∥∥f(M j−j′ · +M j−j′k′ − k) − q(·)
∥∥∥

L∞(G)
‖g‖L1(G).

The space Πs−1 is affine invariant, i.e., q ∈ Πs−1 yields q(A · +t) ∈ Πs−1, for all A ∈ R
d×d and

t ∈ R
d. Thus, Theorem 3.4 with l = 0 implies
∣∣∣
〈
f

p
j,k, g

p′

j′,k′

〉∣∣∣ . m
(j−j′) 1

p inf
q∈Πs−1

‖f − q‖L∞(Mj−j′G+Mj−j′k′−k)

. m
(j−j′) 1

p diam(M j−j′G)s|f |W s(L∞(Mj−j′G+Mj−j′k′−k))

. m
(j−j′) 1

pm(j−j′) s
d |f |W s(L∞(G+Mj−j′k′−k)).

Since f is compactly supported, there exists r > 0 such that, for all v ∈ R
d with ‖v‖ ≥ r, the

intersection (G+ v) ∩ supp(f) is empty. Hence, the Sobolev semi-norm can be estimated by

|f |W s(L∞(G+Mj−j′k′−k)) ≤

{
|f |W s(L∞(Rd)), for ‖M j−j′k′ − k‖ < r,

0, for ‖M j−j′k′ − k‖ ≥ r.

This provides the final inequalities

∣∣∣
〈
f

p
j,k, g

p′

j′,k′

〉∣∣∣ . m
(j−j′)( s

d
+ 1

p
)|f |W s(L∞(Rd))

(
1 + r

1 + ‖M j−j′k′ − k‖

)δ

.
m

(j−j′)( s
d
+ 1

p
)

(1 + ‖M j−j′k′ − k‖)δ
.

Next, we address j > j′. Following the lines above with interchanged roles of f and g, we obtain

∣∣∣
〈
f

p
j,k, g

p′

j′,k′

〉∣∣∣ .
m

(j′−j)( s′

d
+ 1

p′
)

(1 + ‖M j′−jk − k′‖)
δ
.

By applying Proposition 3.3, the operator T is bounded on ℓτ .

Proposition 3.5 addresses single f and g. In order to consider a finite number of functions as in
Theorem 3.1, one applies norm coherences between ℓτ (E × Z × Z

d) and ℓτ (Z × Z
d). We omit the

detailed elaboration.
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3.3 Hilbertian Dictionaries

Given a sufficiently smooth pair of compactly supported biorthogonal wavelet bases, then for f ∈

Bα, the series expansion
∑

λ∈Λ

〈
f, ψ̃

p′

λ

〉
ψ

p
λ converges towards f in Lp(R

d). This subsection provides
some fundamentals, in order to generalize this statement regarding wavelet bi-frames. We extend
the dyadic results in [1] to isotropic scalings. Given a wavelet system {ψλ : λ ∈ Λ}, we derive a
classical decay condition on the sequence (cλ)λ∈Λ such that

∑

λ∈Λ

cλψ
p
λ (13)

converges in Lp(R
d). In order to obtain a sufficient variety of decay conditions, we recall the

following family of sequence spaces. For 0 < p < ∞, 0 < q ≤ ∞ and a countable index set K, the
Lorentz space ℓp,q(K) is the collection of bounded sequences (cκ)κ∈K satisfying ‖(cκ)κ∈K‖ℓp,q

< ∞,
where

‖(cκ)κ∈K‖ℓp,q
:=





(∑∞
j=1(j

1

p c∗j )
q 1

j

) 1

q
, for 0 < q <∞,

supj≥1(j
1

p c∗j ), for q = ∞,

while (c∗j )j∈N denotes a decreasing rearrangement of (|cκ|)κ∈K.
Naturally, convergence problems as in (13) also arise in more abstract settings. In order to point

out the key ingredients of its solution, we study the problem in a general framework. Following
[1, 19], a dictionary D = {gκ : κ ∈ K} in a Banach space X is called ℓp,q(K)-hilbertian if the
synthesis-type operator

F : ℓp,q(K) → X, (cκ)κ∈K 7→
∑

κ∈K

cκgκ

is well-defined and bounded. For q = 1, hilbertian dictionaries are characterized in the following
Proposition.

Proposition 3.6. Let D = {gκ : κ ∈ K} be a dictionary in a Banach space X and 1 ≤ p < ∞.

Then the following properties are equivalent:

(i) D is ℓp,1(K)-hilbertian.

(ii) For all index sets KN ⊂ K of cardinality N and every choice of signs
∥∥∥
∑

κ∈KN

±gκ

∥∥∥
X

. N
1

p .

(iii) For all index sets KN ⊂ K of cardinality N and every sequence (dκ)κ∈KN
∈ ℓ(KN )

∥∥∥
∑

κ∈KN

dκgκ

∥∥∥
X

. N
1

p max
κ∈KN

|dκ|. (14)

The equivalence between (i) and (ii) has already been derived in [19]. We extend the result to
condition (iii).

Proof. Obviously, (iii) implies (ii). Let us show that (i) implies (iii). Given (dκ)κ∈KN
∈ ℓ(KN ), its

zero extension (cκ)κ∈K is contained in ℓp,1(K). Applying (i) yields

∥∥∥
∑

κ∈KN

dκgκ

∥∥∥
X

. ‖(cκ)κ∈K‖ℓp,1
=

∞∑

j=1

j
1

p
−1
c∗j

≤ max
κ∈KN

|cκ|
N∑

j=1

j
1

p
−1

= max
κ∈KN

|dκ|N
1

p
1

N

N∑

j=1

(
j
N

) 1

p
−1
.
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A Riemann sum argument provides

1

N

N∑

j=1

(
j
N

) 1

p
−1

≤

∫ 1

0
x

1

p
−1
dx = p.

This concludes the proof.

According to the results in [1], compactly supported dyadic wavelet systems, properly normalized
in Lp(R

d), are ℓp,1-hilbertian. We can extend this result to isotropic scalings:

Corollary 3.7. Given M isotropic, let ψ(µ), µ = 1, . . . , n, be compactly supported functions in

L∞(Rd) and 1 ≤ p < ∞. Then, with Λ = {1, . . . , n} × Z × Z
d, the Lp-normalized wavelet system{

ψ
p
λ : λ ∈ Λ

}
is an ℓp,1(Λ)-hilbertian dictionary in Lp(R

d).

Proof. The following estimate is a standard component in nonlinear approximation theory for
dyadic dilation, cf. [6, 12],

∥∥∥
∑

λ∈ΛN

dλψλ

∥∥∥
Lp

. N
1

p max
λ∈ΛN

‖dλψλ‖Lp
. (15)

See [26], for this estimate with respect to wavelet bases with isotropic scaling. An analysis of its
proof yields that the bases assumption is not necessary, and (15) holds in our situation. Actually,
(15) is just a rephrasing of (14) involving the Lp(R

d)-normalization, and applying Proposition 3.6
concludes the proof.

According to Corollary 3.7, the series in (13) converges in Lp(R
d) if (cλ)λ∈Λ is contained in

ℓp,1(Λ). In order to consider wavelet bi-frame expansions

f =
∑

λ∈Λ

〈
f, ψ̃

p′

λ

〉
ψ

p
λ (16)

in Lp(R
d), there still remain two problems. First, we have to verify that the coefficient sequence(〈

f, ψ̃
p′

λ

〉)
λ∈Λ

is contained in ℓp,1(Λ). Then the right-hand side of (16) converges in Lp(R
d). Second,

we have to verify that the series converges towards f . Both problems are addressed in the following
Subsection.

3.4 A Characterization by Wavelet Bi-Frames

In this subsection, we finally derive the characterization of Besov spaces by wavelet bi-frames with
general isotropic scalings. The following theorem extends dyadic results in [1].

Theorem 3.8. Given 1 < p <∞, 1
p
+ 1

p′
= 1, let X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}) be a com-

pactly supported wavelet bi-frame. In addition, suppose that X({η(1), . . . , η(m−1)}), X({η̃(1), . . . , η̃(m−1)})
is a pair of compactly supported biorthogonal wavelet bases. Given s, s′ ∈ N, then let, for µ =
1, . . . , n and ν = 1, . . . ,m− 1, ψ(µ), η(ν) ∈W s(L∞(Rd)) and ψ̃(µ), η̃(ν) ∈W s′(L∞(Rd)) have s′ and

s vanishing moments, respectively. If the pair of biorthogonal wavelet bases characterizes Bα in the

sense of (7) and (8), then we have, for α in the range

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,

(17)
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and for all f ∈ Bα, that

f =
∑

λ∈Λ

〈
f, ψ̃

p′

λ

〉
ψ

p
λ (18)

holds in Lp(R
d) and

|f |Bα ∼
∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ (Λ)

, for 1
τ

= α
d

+ 1
p
.

Remark 3.9. Theorem 3.8 requires the existence of a pair of biorthogonal reference wavelet bases,
which already characterize the Besov space. In the dyadic setting of [1], this assumption is not
explicitly mentioned since one can simply choose tensor products of sufficiently smooth orthonormal
Daubechies wavelets or the Meyer wavelet, see [8]. As far as we know, it is still an open problem,
whether, for each isotropic dilation matrix, one can find families of arbitrarily smooth compactly
supported pairs of biorthogonal wavelet bases. Hence, we had to formulate the existence of a
reference system as an assumption in Theorem 3.8. We should point out, that, for many nondyadic
scalings, these families exist, cf. [11, 22], and the characterization is applicable. Since one allows
for arbitrarily large support sizes, we expect that the overwhelming majority of isotropic dilation
matrices has such biorthogonal reference wavelets.

For preparation, we need the following lemma. We omit the simple proof.

Lemma 3.10. Let 1 ≤ q < p ≤ ∞ and let fn ∈ Lp(R
d) ∩ Lq(R

d), n ∈ N, converge to f in Lp(R
d)

and to g in Lq(R
d). Then f = g up to a set of measure zero.

Proof of Theorem 3.8. Let f ∈ Bα and Λ′ = {1, . . . ,m− 1} × Z × Z
d, then

f =
∑

λ′∈Λ′

〈
f, η̃

p′

λ′

〉
η

p
λ′

holds in Lp(R
d) and

|f |Bα ∼
∥∥(〈f, η̃p′

λ′

〉)
λ′∈Λ′

∥∥
ℓτ
. (19)

For s
d

+ 1
p
≥ 1, we have 1

τ
= α

d
+ 1

p
< s

d
+ 1

p
. Hence, p > τ >

(
s
d

+ 1
p

)−1
, and τ is in the admissible

range of Theorem 3.1. For s
d

+ 1
p
≤ 1, we have

1

τ
=
α

d
+

1

p
<

s

p(d− s)
+

1

p

=
d

p(d− s)
=

1

p
(
1 − s

d

) .

Thus, Theorem 3.1 can be applied in both cases. Then we obtain

∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ

=
∥∥∥
( ∑

λ′∈Λ′

〈
f, η̃

p′

λ′

〉〈
η

p
λ′ , ψ̃

p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

(20)

.
∥∥(〈f, η̃p′

λ′

〉)
λ′∈Λ′

∥∥
ℓτ
. (21)

With (19), this implies ∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ

. |f |Bα . (22)

For the reverse estimate, wavelet bi-frame and biorthogonal wavelets change roles in the local-
ization process. First, we establish (18). According to Corollary 3.7, the primal bi-frame wavelets{
ψ

p
λ : λ ∈ Λ

}
are ℓp,1-hilbertian. Hence, the synthesis-type operator

F : ℓp,1 → Lp(R
d), (dλ)λ∈Λ 7→

∑

λ∈Λ

dλψ
p
λ

12



is well-defined and bounded. By applying (22), the analysis-type operator

F̃ ∗ : Bα → ℓτ , f 7→
(〈
f, ψ̃

p′

λ′

〉)
λ′

is bounded (the notation may only remind of the original analysis operator on Hilbert spaces. The
present operator F̃ ∗ is neither considered as any adjoint on Hilbert spaces nor any dual operator
on Banach spaces). Due to ℓτ (Λ) →֒ ℓp,1(Λ), we can consider the bounded operator

FF̃ ∗ : Bα → Lp(R
d)

more closely. Since Bα is contained in Lp(R
d), Lemma 3.10 and the bi-frame expansion in L2(R

d)

imply that FF̃ ∗ is the identity on Bα ∩ L2(R
d). According to the results of Chapter 1 in [29], the

intersection Bα∩L2(R
d) is dense in Bα. Hence, the continuity of FF̃ ∗ finally yields that (18) holds

in Lp(R
d).

By following (20), (21) with interchanged roles of ψ̃, η̃ as well as η replaced by ψ, we obtain the
reverse estimate of (22).

4 Determining the Approximation Classes

4.1 Jackson Inequality

The following theorem establishs a Jackson inequality for wavelet bi-frames with isotropic scalings.

Theorem 4.1. Let M be isotropic and 1 < p <∞. Given a compactly supported wavelet bi-frame

X({ψ(1) , . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}), let the assumptions of Theorem 3.8 hold. If α is in the

range of (17), then

σN (f,X({ψ(1), . . . , ψ(n)}))Lp . N−α
d |f |Bα , for all f ∈ Bα, N ∈ N.

Proof. By Corollary 3.7, the system
{
ψ

p
λ : λ ∈ Λ

}
is ℓp,1(Λ)-hilbertian. Thus, the general Jackson

inequality for hilbertian dictionaries in [19] is applicable, which yields

σN (f,X({ψ(1), . . . , ψ(n)}))Lp . N−α
d inf

{
‖(cλ)λ∈Λ‖ℓτ

: f =
∑

λ∈Λ

cλψ
p
λ

}
, (23)

where 1
τ

= α
d

+ 1
p
. Given f ∈ Bα and according to Theorem 3.8, the expansion

f =
∑

λ∈Λ

〈
f, ψ̃

p′

λ

〉
ψ

p
λ

holds in Lp(R
d) and

(〈
f, ψ̃

p′

λ

〉)
λ∈Λ

∈ ℓτ (Λ), where 1
p

+ 1
p′

= 1. Thus, the right-hand side of (23)

is bounded by N−α
d

∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ

Then the norm equivalence of Theorem 3.8 concludes the
proof.

4.2 Bernstein Inequality

In this subsection, we establish a Bernstein inequality for wavelet bi-frames with idempotent scaling.
It requires an independence assumption as we shall introduce next. Given a nonempty open subset
A ⊂ R

d, we say a compactly supported distribution ϕ has linearly independent integer shifts on A

if ∑

k∈Zd

ckϕ(· − k) = 0 on A,

implies ckϕ(·−k) = 0 on A, for all k ∈ Z
d. Our result is based on the generalization of the following

dyadic Bernstein inequality from [23].
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Theorem 4.2. Given M = 2Id and 1 < p < ∞, let ϕ ∈ W s(L∞(Rd)), s ∈ N, be a compactly

supported refinable function with linearly independent integer shifts on (0, 1)d. Then, for each

0 < α < s,

|f |Bα . N
α
d ‖f‖Lp(Rd), for all f ∈ ΣN (X({ϕ})) .

By following the lines of the proof in [23], one verifies that Theorem 4.2 still holds for a dilation
matrix M = hId, where h ∈ N. This observation is the key ingredient for the proof of the following
corollary. It generalizes the dyadic result in [1] regarding idempotent dilation matrices M (recall
that a dilation matrix M is called idempotent if there exist l, h ∈ N such that M l = hId).

Corollary 4.3. Given an idempotent dilation matrix M and 1 < p < ∞, let ϕ ∈ W s(L∞(Rd)) be

a compactly supported refinable function with finitely supported mask and with linearly independent

integer shifts on (0, 1)d. Moreover, let ψ(1), . . . , ψ(n) be wavelets with finitely supported sequences(
a

(µ)
k

)
k∈Zd such that (4) holds. Then, for 0 < α < s,

|f |Bα . N
α
d ‖f‖Lp(Rd), for all f ∈ ΣN(X({ψ(1) , . . . , ψ(n)})).

Proof. According to (4), we have for each µ = 1, . . . , n,

ψ(µ)(M jx− k′) =
∑

k∈Zd

a
(µ)
k ϕ(M j+1x−Mk′ − k), for all j ∈ Z, k′ ∈ Z

d.

Thus, there exists a constant C1 such that ψ
(1)
j,k , . . . , ψ

(n)
j,k ∈ ΣC1

(X({ϕ})). This implies

ΣN (X({ψ(1), . . . , ψ(n)})) ⊂ ΣC1N (X({ϕ})). (24)

Let (ak)k∈Zd be the finitely supported mask of ϕ, and let l and h be contained in N such that
M l = hId. In the sequel, we verify that there exists a uniform constant C2 such that, for all j′ ∈ Z

and k′ ∈ Z
d

ϕ(M j′x− k′) ∈ ΣC2
({ϕ(hjx− k) : j ∈ Z, k ∈ Z

d}). (25)

Note that we can find u ∈ Z and r ∈ N, r < l such that j′ + r = lu. Then r-times applying the
refinement equation (3) provides

ϕ(M j′x− k′) =
∑

k1,...,kr

ak1
· · · akr

ϕ(M rM j′x−M r−1k1 − . . .−Mkr−1 − kr)

=
∑

k1,...,kr

ak1
· · · akr

ϕ(M lux−M r−1k1 − . . .−Mkr−1 − kr).

According to M l = hId, the last term is contained in

ΣCr({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}),

where C denotes the number of nonzero entries of the mask (ak)k∈Zd . Since r < l, (25) holds with
C2 = C l−1.

From (25), we derive

ΣN(X({ϕ})) ⊂ ΣC2N ({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}),

which provides with (24)

ΣN (X({ψ(1) , . . . , ψ(n)})) ⊂ ΣC2C1N ({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}).
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Then applying Theorem 4.2 to hId yields

|f |Bα
τ (Lτ (Rd)) . (C2C1N)

α
d ‖f‖Lp(Rd)

. N
α
d ‖f‖Lp(Rd),

for all f ∈ ΣN (X({ψ(1) , . . . , ψ(n)})).

Remark 4.4. First, the restriction of the Bernstein inequality to idempotent dilation matrices is
only a technical requirement. Most of the isotropic dilation matrices addressed in the literature
are idempotent. Second, the arising constants are already far from being optimal in the Jackson
inequality of Theorem 4.1, see also Remark 3.9. However, our proof of the Bernstein inequality
yields to a certain extent an explosion since the constants linearly depend on the number of nonzero
entries of the underlying masks and they even exponentially depend on the idempotence of the
scaling. Nevertheless, we could derive the qualitative result, and we are convinced that the true
constants are much better.

The Bernstein inequality in Corollary 4.3 requires that the shifts of the underlying refinable
function are linearly independent on the unit cube. Jia conjectures in [23] that the assumption can
be removed. However, there is no proof so far, and the application of the corollary requires the
verification of this condition.

4.3 Approximation Classes as Besov Spaces

Let us collect the results of the previous subsections. If the assumptions of Theorem 4.1 and
Corollary 4.3 are satisfied, we have established matching Jackson and Bernstein inequalities, which
yields

A
α
d
τ

(
Lp(R

d),X({ψ(1) , . . . , ψ(n)})
)

=
[
Lp(R

d), Bs
]

α
s

,τ
.

For 1
τ

= α
d

+ 1
p
, the right-hand side equals the Besov space Bα, cf. [25], see also [7, 13] and the

survey article [12]. Hence, the approximation class is essentially a Besov space. The following
theorem is an explicit summary of our results:

Theorem 4.5. Given an idempotent dilation matrix M and 1 < p < ∞, let X({ψ(1), . . . , ψ(n)}),
X({ψ̃(1) , . . . , ψ̃(n)}) be a compactly supported wavelet bi-frame. Moreover, let their primal refinable

function ϕ ∈W s(L∞(Rd)), s ∈ N, have linearly independent integer shifts on (0, 1)d. Suppose that

the assumptions of Theorem 3.8 hold. Then for α in the range of (17), we have

A
α
d
τ

(
Lp(R

d),X({ψ(1), . . . , ψ(n)})
)

= Bα, where 1
τ

= α
d

+ 1
p
.

In order to apply Theorem 4.5 to the Checkerboard wavelet bi-frames in [15, 16], we have to
verify that their underlying refinable functions have linearly independent integer shifts on the unit
cube. We address this topic in the final Section 6. Before, we complete the theoretical framework,
and we derive a realization of the best N -term approximation rate in the following Section 5.

5 N-term Approximation by Thresholding

Theorem 4.5 describes best N -term approximation. In order to implement practical algorithms, we
still need a rule for the selection of N particular terms. In other words, we want to realize the best
N -term approximation rate. For pairs of biorthogonal wavelet bases, one can simply select the N
largest coefficients of the series expansion, cf. [12, 26]. This procedure also works for dyadic wavelet
bi-frames by thresholding the bi-frame expansion, see [1] for details. In the following, we extend
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these results to wavelet bi-frames with general isotropic scalings. Moreover, we allow for more
general thresholding operators. They are considered in [2] with respect to unconditional bases. An
analysis of the proof yields that the results hold true for wavelet bi-frames as well. The critical
ingredients are the following:

•
{
ψ

p
λ : λ ∈ Λ

}
is ℓp,1-hilbertian,

•
∥∥(〈f, ψ̃p′

λ

〉)
λ∈Λ

∥∥
ℓτ

. |f |Bα , for all f ∈ Bα and 1
τ

= α
d

+ 1
p
.

Given a wavelet bi-frame X({ψ(1), . . . ψ(n)}), X({ψ̃(1), . . . ψ̃(n)} satisfying the assumptions of The-
orem 4.1, these points are satisfied. Then following [2], we call a function ̺ : C × R+ → C a
thresholding rule if

|x− ̺(x, δ)| . min(|x|, δ)

and |x| . δ implies ̺(x, δ) = 0. It should be mentioned that hard- and soft-thresholding, see for
instance [4, 30], as well as garotte-thresholding as described in [18] constitute thresholding rules.
Under the notation and the assumptions of Theorem 3.8, let ̺ be a thresholding rule. Then

T̺ : Bα × R+ → Lp(R
d), (f, δ) 7→

∑

λ∈Λ

̺
(〈
f, ψ̃

p′

λ

〉
, δ
)
ψ

p
λ (26)

is called the associated thresholding operator. Since
(〈
f, ψ̃

p′

λ

〉)
λ∈Λ

is contained in ℓτ (Λ), the series
(26) is actually a finite sum. Note that the operator is applied to the bi-frame coefficients, and one
does not allow for thresholding an arbitrary expansion. By denoting

Nf,δ := card
{
λ ∈ Λ : ̺

(〈
f, ψ̃

p′

λ

〉
, δ
)
6= 0
}
,

we have for α in the range of (17) and for all f ∈ Bα,

‖f − T̺(f, δ)‖Lp
. N

−α
d

f,δ |f |Bα .

Thus, the bestN -term approximation rate as described in Theorem 4.5 can be realized by threshold-
ing the wavelet bi-frame expansion. Note that this result does not require any linear independence.
Hence, even if the assumptions of the Bernstein inequality are not satisfied and so the best N -term
approximation is not completely described, thresholding still provides the same approximation rate
as predicted by the Jackson inequality.

6 Checkerboard Wavelet Bi-Frames

Given M as in (5), (6), a family of wavelet bi-frames in arbitary dimensions with arbitrarily high
smoothness and an arbitrarily high number of vanishing moments is derived from only 3 wavelets in
[15]. They satisfy a variety of optimality conditions and we refer to them as Checkerboard wavelet

bi-frames in the present paper since M generates the checkerboard lattice, i.e.,

MZ
d =

{
(k1, . . . , kd)

⊤ ∈ Z
d :

d∑

i=1

ki ∈ 2Z

}
.

The present section is dedicated to determining the bestN -term approximation class of the Checker-
board wavelet bi-frames.

The scaling is idempotent, but before we can apply our results of the previous sections, we
have to verify that the underlying primal refinable function of the wavelet bi-frame has linearly
independent integer shifts on the unit cube.
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Advantageously, the underlying refinable function ϕ of the Checkerboard wavelet bi-frame is
explicitly given by

ϕ(x) = ϕ0 ⊗ · · · ⊗ ϕ0 (Dx) , (27)

where ϕ0 is a univariate dyadic refinable function andD is a square matrix with ones in the diagonal
as well as above, and zeros elsewhere, cf. [15]. Moreover, ϕ0 is fundamental, i.e., ϕ0(k) = δ0,k, for
all k ∈ Z. Therefore, ϕ0 has linearly independent integer shifts on R. Since ϕ0 is univariate, this
yields that it even has locally linearly independent integer shifts, i.e., its integer shifts are linearly
independent on each nonempty open subset in R

d, cf. [28].
In the following, we will verify that local linear independence of integer shifts is invariant under

tensor products of univariate refinable functions as well as under the action of D.

Proposition 6.1. Let ϕ0 be a univariate, continuous, dyadic refinable function with compact sup-

port. If its integer shifts are linearly independent on R, then the tensor product ϕ =
⊗d

i=1 ϕ0 has

locally linearly independent integer shifts.

The following proof of Proposition 6.1 is direct, see [17] for an alternative proof in terms of the
mask of the refinable function.

Proof. Given a nonempty open subset A in R
d, let x be an arbitrary point in A. Then there exists

an open cube Ux ⊂ A, whose edges are parallel to the coordinate axis, and x is contained in Ux.
Thus, we have open subsets Uxi

in R, i = 1, . . . , d, such that

Ux = Ux1
× · · · × Uxd

.

According to [28], ϕ0 has locally linearly independent integer shifts. Hence, for each i = 1, . . . , d,
the collection

Bi := {ϕ0(· − ki) : supp(ϕ0(· − ki)) ∩ Uxi
6= ∅, ki ∈ Z}

is linearly independent. Therefore, the collection of tensor products

B1 ⊗ · · · ⊗Bd = {ϕ(· − k) : supp(ϕ0(· − ki)) ∩ Uxi
6= ∅, ki ∈ Z, i = 1, . . . , d}

=
{
ϕ(· − k) : supp(ϕ(· − k)) ∩ Ux 6= ∅, k ∈ Z

d
}

is also linearly independent. Thus, ϕ has linearly independent integer shifts on Ux. Since A =⋃
x∈A Ux, the integer shifts of ϕ are linearly independent on A.

Next, we address the action of D in (27).

Lemma 6.2. Let ϕ : R
d1 → C have locally linearly independent integer shifts, and let D ∈ Z

d1×d2

be an integer matrix of rank d1. Then ϕ(D·) : R
d2 → C has locally linearly independent integer

shifts.

Proof. Given some nonempty open subset A in R
d2, let

∑

k∈Zd2

ckϕ(D(· − k)) = 0, on A.

This implies
∑

k∈Zd2
ckϕ(· −Dk) = 0, on DA. A trivial zero extension yields

∑

k∈Zd2

ckϕ(· −Dk) +
∑

k∈Zd1\DZd2

0 · ϕ(· − k) = 0, on DA.

Since D : R
d2 → R

d1 is linear and onto, it constitutes an open mapping, i.e., DA is an open subset
of R

d1. Hence, the local linear independence of ϕ provides ckϕ(·−Dk) = 0, on DA, for all k ∈ Z
d2 .

Finally, this yields ckϕ(D(· − k)) = 0, on A, for all k ∈ Z
d2, which concludes the proof.
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By applying Proposition 6.1 and Lemma 6.2, the underlying refinable function ϕ in (27) of the
Checkerboard wavelet bi-frame has locally linearly independent integer shifts. Hence, Theorem 4.5
can be applied:

Example 6.3. Given 1 < p < ∞ and an arbitrarily large number 0 < s ∈ N, there is a Checker-
board wavelet bi-frame with a sufficiently high order of smoothness and sufficiently many vanishing
moments such that, for all 0 < α < s,

A
α
d
τ

(
Lp(R

d),X({ψ(1) , ψ(2), ψ(3)})
)

= Bα, where 1
τ

= α
d

+ 1
p
.

Note that the above equality holds in arbitrary dimensions with only three wavelets. According
to Section 5, the best N -term approximation rate can be realized by an arbitrary thresholding
operator.

Remark 6.4. In [16], the number of wavelets of the Checkerboard wavelet bi-frames could even
be reduced to 2 and the underlying refinable function is still given by (27). Therefore, Example 6.3
even holds with respect to this reduced counterpart with only two wavelets in arbitrary dimensions.
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[20] K. Gröchenig, Localized frames are finite unions of riesz sequences, Adv. Comp. Math. 18

(2003), 149–157.

[21] , Localization of frames, banach frames, and the invertibility of the frame operator, J.
Fourier Anal. Appl. 10 (2004), no. 2, 105–132.

[22] H. Ji, S. D. Riemenschneider, and Z. Shen, Multivariate compactly supported fundamental

refinable functions, duals and biorthogonal wavelets, Stud. Appl. Math. 102 (1999), 173–204.

[23] R. Q. Jia, A bernstein-type inequality associated with wavelet decomposition, Constr. Approx
9 (1993), 299–318.

[24] , Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647–665.

[25] G. Kyriazis, Non-linear approximation and interpolation spaces, J. Approx. 113 (2001), 110–
126.

[26] M. Lindemann, Approximation properties of non-separable wavelet bases with isotropic scaling

matrices and their relation to besov spaces, Ph.D. thesis, University of Bremen, 2005.

[27] Y. Meyer and R. Coifman, Wavelets. Calderon zygmund and multilinear operators, Cambridge
University Press, 1997.

[28] A. Ron, Introduction to shift-invariant spaces I: Linear independence, Multivariate Approxi-
mation and Applications (N. Dyn et al., ed.), 1999, pp. 112–151.

[29] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Non-

linear Partial Differential Equations, Walter de Gruyter, Berlin, 1996.

[30] T. Tao, On the almost everywhere convergence of wavelet summation methods, Appl. Comput.
Harm. Anal. 3 (1996), 384–387.

19


