I. INTRODUCTION

The low-temperature conductance of nanoscaled semiconductor quantum dots (often called quantum billiards) is dominated by quantum-mechanical interference of electron waves giving rise to reproducible conductance oscillations [1–10]. Theoretical and experimental studies of the conductance oscillations have been concentrated on both statistical and geometry-specific features [11–17]. Analyses of the statistical aspects of the conductance are commonly based on the random matrix theory or similar stochastic methods [12]. In order to provide an interpretation of the geometry-specific features in oscillations in a billiard of a given shape; different, and sometimes conflicting, approaches have been used [1–11, 14–17]. Very often the interpretation of the conductance is not directly based on transport calculations. Consequently, the explanation of the characteristic peaks in the conductance spectrum has had rather speculative character. In contrast, the semiclassical approach [13–19] represents one of the most powerful tools to study the geometry-specific scattering as it allows one to perform transport calculations for structures of arbitrary geometry. At the same time, the semiclassical approach can provide an intuitive interpretation of the conductance in terms of classical trajectories connecting the leads, each of them carrying the quantum-mechanical phase.

In this paper, we present experimental studies of geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum-mechanical scattering calculations and find excellent agreement with experimental results. We also carry out semiclassical calculations where the conductance is given as a sum over all classical trajectories between the leads, each of the trajectories carrying a quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes t and r are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities $T = |t|^2$ and $R = |r|^2$ can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of nonclassical “ghost” trajectories, i.e., trajectories that include classically forbidden reflection off the lead mouths.

DOI: 10.1103/PhysRevE.66.026217 PACS number(s): 05.45.Mt, 03.65.Sq, 73.23.Ad

II. BASIC THEORY

The dynamics of an electron in a two-dimensional quantum dot is governed by the Schrödinger equation

$$\frac{\hbar^2}{2m} \nabla^2 + E \psi(x,y) = 0,$$

where the wave function vanishes on the boundary $\psi = 0$, E is the electron Fermi energy and the potential inside the billiard is assumed to be zero. This equation has the same form as the Helmholtz equation governing the dynamics of the lowest TM mode in microwave billiards [19].
In the absence of a magnetic field, the transmission amplitude t_{mn} is given by the projection of the retarded Green function $G = (H - E)^{-1}$ onto the transverse wave functions $\phi_n(y)$ in the incoming and outgoing leads [22],

$$t_{mn}(k) = -i\hbar \sqrt{v_n v_m} \times \int dy_1 \int dy_2 \phi^*_{mn}(y_1) \phi_{mn}(y_2) G(y_1, y_2, k),$$

(2)

where v_n is the longitudinal velocity for the mode n and k is the wave vector. The total transmission coefficient $T = \sum_{mn} T_{mn}$ is a sum over all transmission probabilities of modes m propagating in one lead to modes n propagating in the other; T_{mn} is the square modulus of the transmission amplitude, $T_{mn} = |t_{mn}|^2$.

The quantum-mechanical computations have been performed using a recursive Green’s function technique based on the Dyson equation [23]. In semiclassical computations, the quantum-mechanical Green function is replaced by its semiclassical approximation [18,19]. The semiclassical transmission amplitude can be represented by the form [14–17]

$$t_{mn}^{SC}(k) = \sum_s A_{mn}^s e^{ikl_s},$$

(3)

where s denotes a classical trajectory of length l_s between the two leads; A_{mn}^s is an amplitude factor that depends on the density of trajectories, mode number, entrance and exit angles, etc. The details of the semiclassical calculations are given in Ref. [17].

The conductance oscillations are most conveniently analyzed in terms of the length spectrum given by the Fourier transform (FT)

$$\bar{f}(\ell) = \int dk f(k) e^{-ik\ell}.$$

(4)

Due to the rapidly varying phase factor in the exponent of Eq. (3), the length spectrum of the SC transmission amplitude $\tilde{T}_{mn}^{SC}(\ell)$ is obviously peaked at the lengths $\ell = l_s$ of the trajectories between the leads. This behavior of the length spectrum is well understood and has been numerically verified for a number of different model billiards with leads [14–16].

Using Eq. (3), the transmission probability can be written in the form

$$T_{mn}^{SC} = |t_{mn}^{SC}|^2 = \sum_s |A_{mn}^s|^2 + \sum_{s,s'} A_{mn}^s A_{mn}^{s'} e^{ik(l_s - l_{s'})}.$$

(5)

The first (slowly varying) term represents, in the limit of a large mode numbers in the leads, the classical transmission probability. The second (oscillating) term describes quantum corrections to the classical transmission due to interference between paths s and s'. The length spectrum of the transmission probability $\tilde{T}_{mn}^{SC}(\ell)$ is obviously peaked at the length difference $\ell = l_s - l_{s'}$ in all pairs of trajectories between the leads. Thus, identification of the characteristic frequencies in the probabilities reduces to the analysis of the path difference distribution in a billiard with a given lead geometry [14,17].

III. EXPERIMENT

Figure 1 shows a sketch of the microwave resonator used in the experiments. The microwaves enter the resonator through a waveguide at a fixed position on one side, and leave the resonator on the opposite side through another waveguide, which could be attached at four different positions indicated in the figure. Commercially available waveguides were used, with coupling antennas at the end and closed by a microwave absorber. The experimental approach uses the fact that in quasi-two-dimensional resonators there is a one-to-one correspondence with quantum mechanics as long as the frequency is smaller than $\nu_{\text{max}} = c/2d$, where d is the resonator height [19]. In particular, the quantum-mechanical transmission amplitude t introduced above, corresponds directly to the transmission amplitude for an electromagnetic wave to pass from the entrance to the exit waveguide. In the present experiment the height was $d = 7.8$ mm, i.e., the billiard was quasi-two-dimensional for $\nu < 19$ GHz. More experimental details can be found in Ref. [24]. Transmission spectra, including modulus and phase, were taken in the frequency range 10 GHz $< \nu < 18$ GHz for the four available positions of the outgoing waveguide. In the whole frequency range there is only one propagating mode in the waveguide. As an example, Fig. 2 shows the real and imaginary parts of a typical transmission amplitude $t(\nu)$ obtained in this way, as well as the transmission probability $T(\nu) = |t(\nu)|^2$.

IV. RESULTS AND DISCUSSION

Figure 3 shows the experimental and calculated data for the Fourier transformed transmission and reflection amplitudes, $\tilde{T}_{11}(\ell)$ and $\tilde{R}_{11}(\ell)$. The agreement between the experimental results and the exact quantum-mechanical (QM) calculations is very good. The SC transport calculations allow us to identify the characteristic peaks in the length spectrum in terms of classical trajectories connecting the billiard leads. Indeed, each peak in the SC spectrum represents a contribution from a particular classical trajectory, as illustrated in the insets. However, because of the approximate nature of the
FIG. 2. Real and imaginary parts of a typical transmission amplitude $t(\nu)$ (dotted and dashed lines, respectively). The solid line shows the transmission probability $T(\nu)=|t|^2$. The total interval of frequency variation is $10 \text{ GHz} < \nu < 18 \text{ GHz}$. The frequency resolution is 200 kHz.

Semiclassical approximation, the heights of the SC and QM peaks do not agree fully with each other.

Furthermore, the experimental data as well as the QM calculations show the presence of peaks that are absent in the SC calculations (for example, the peaks at $l=5.5, 8.8, 10.5$ in the reflection amplitude). These are so-called “ghost” trajectories, i.e., trajectories that include a classically forbidden reflection off the lead mouths [14]. For example, the peak in the reflection amplitude at $l=8.8$ is caused by the trajectory with the length $l=4.4$ which, after one revolution in the billiard, is reflected back at the exit by the lead mouth, so that it makes one more revolution; and its total length is then $L=4.4 \times 2 = 8.8$. Such nonclassical trajectories are not included in the standard semiclassical approximation.

The ghost trajectories are more important for reflection than for transmission. This is due to the fact that each ghost trajectory, manifesting itself in the reflection, bounces off the lead mouth only once, whereas each ghost trajectory, contributing to the transmission, has to bounce off the lead mouth twice. As a result, the amplitude of such a trajectory with two nonclassical bounces is obviously lower than that with only one bounce.

The Fourier transforms of the experimental and calculated QM transmission and reflection probabilities, $T_{11}(\nu)$ and $R_{11}(\nu)$, are shown in Fig. 4. The correspondence between the theoretical and experimental probabilities is also rather good. Note that because of the current conservation requirement, $R + T = 1$, the variation of the transmission is opposite to that of reflection, $\delta T = - \delta R$. As a result, the FTs of the calculated QM transmission and reflection probabilities are practically identical. This is, however, not the case for the experimental transmission and reflection probabilities, because of the presence of some absorption in the system. As we neither include absorption nor inelastic scattering in the theoretical calculations, this is the reason for some discrepancy existing between the QM calculations and the experiment.

In contrast to the case of SC and QM amplitudes, the agreement between the SC and QM probabilities is only marginal (therefore we do not show the SC results here). Because the probabilities are the squared moduli of the amplitudes, $T = |t|^2$, the discrepancy that exists between the SC and QM amplitudes, see Fig. 3, becomes much more pronounced for the probabilities (a detailed analysis of the discrepancy between the SC and QM approaches is given in Ref. [17]). Furthermore, the interval of the frequency variation (limited to one propagating mode in the leads) is not wide enough to ensure reliable statistics for the probabilities. The calculations demonstrate that with a wider frequency interval the characteristic peaks in the FT spectrum of the probabilities $\hat{T}(\nu)$ and $\hat{R}(\nu)$ become better resolved and the agreement between the QM and SC results improves significantly. Experimentally, however, it is not possible to access the frequency range beyond one propagating mode in the leads.

In order to provide an SC interpretation of the probabilities in the available frequency interval (limited to one propagating mode), we average over four different lead geometries, see Fig. 5. Such averaging is justified because the characteristic frequencies of the oscillations in a square bil-
classical length difference distribution is also not sensitive to
positions, liard have been shown to be rather insensitive to the lead
positions [16]. This in turn is related to the fact that the
classical length difference distribution is also not sensitive to the
lead positions. The averaged Fourier transform of the
QM probabilities, $\langle \tilde{T}_{11}(\phi) \rangle$, shows pronounced peaks in the
FT, which are in a good agreement with the corresponding
experimental ones. The correspondence between the averaged
QM and SC results is also rather good. According to the
SC approach, the characteristic peaks in the SC spectra can
be understood in terms of the length differences in pairs of
classical trajectories connecting the leads, see Eq. (5). This is
demonstrated in Fig. 5 where the experimental and calculat-
ed spectra are compared to the classical length difference
between the leads. This provides us with a semi-
classical interpretation of the calculated QM (and therefore
observed) conductance fluctuations. We would like to stress
that this explanation of the characteristic frequencies in the
conductance is based on transport calculations for the open
dot and is thus not equivalent to the rather common point of
view when the observed frequencies in the conductance os-
cillations of an open dot are assigned to the contributions
from specific periodic orbits in a corresponding closed dot
[1–9,11].

V. CONCLUSIONS

We present experimental studies of the geometry-specific
quantum scattering in a microwave billiard of a given shape.
We perform full quantum-mechanical (QM) scattering calcu-
lations and find an excellent agreement with the experimen-
tal results. We also carry out semiclassical (SC) calculations
where the conductance is given as a sum of all classical
trajectories between the leads, each of them carrying the
quantum-mechanical phase. Our results thus provide an un-
ambiguous identification of the specific frequencies of the
oscillations observed in a billiard of a given shape.

ACKNOWLEDGMENTS

Financial support from the National Graduate School in
Scientific Computing (T.B.) and the Swedish Research
Council (I.V.Z.) is acknowledged. The experiments were
supported by the Deutsche Forschungsgemeinschaft.

I.V. Zozoulenko and T. Lundberg, ibid. 81, 1744 (1998).
U. Smilansky, Phys. Rev. Lett. 60, 477 (1988); R.A. Jalabert,
(1997).
(2000).
(2001); T. Blomquist, Phys. Rev. B (to be published); e-print cond-mat/0205287.
[18] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
[19] H.-J. Stöckmann, Quantum Chaos: An Introduction (Cam-
[22] See, e.g., S. Datta, Electronic Transport in Mesoscopic Sys-