Exploring Electronic Substituent Effects
a case comparison and inductive approach for meaningful learning
Andreas Trabert\(^1\) and Michael Schween\(^1\)
\(^1\)Fachbereich Chemie, Philipps-Universität Marburg

Problem and Objectives

Problem
– electronic substituent effects are an ubiquitous and overarching concept of organic chemistry
– meaningful understanding obligatory to predict structural features’ impact on various mechanisms
– students often rely on deficient strategies instead

Objectives
– provide an integrated learning environment, that
 – facilitates access to the deep structure of electronic substituent effects
 – fosters transferable, concept-based explanations and meaningful understanding

Target Group
– pre-service secondary school teachers

Conceptual Design

State of Research
– studies reveal students’ deficits
 – focus on isolated structural features
 – application of single, context-bound models
 – reliance on shortcut heuristics

Technical Basis
– Hammett’s research from the 1930s onwards
 – correlation of structure and reactivity
 – quantification of electronic substituent effects
 – alkaline ester hydrolysis enables systematic monitoring of substituents’ impact on reaction rate
– opens up innovative context for exploring electronic substituent effects in organic chemistry education

Explanation Prompt (Inductive Process)

– cognitive dissonance (inductive process)

Intervention
Objectives
– part of teachers’ education organic laboratory class
– observation task applying guided-inquiry competitive experiments
– three-tier explorative assessment (n = 16) including
 – post-test (instruction quality, content knowledge)
 – explanation task applying laboratory protocols
 – with ICC instruction (treatment group, n = 8)
 – with standard instruction (control group, n = 8)

Evaluation
– good comprehension of instructional material
– similar recognition, but increased correct application of concepts and presence of structure- and energy-related explanations in treatment group
– two cases reveal access to the deep structure of electronic substituent effects in treatment group
– slightly higher improvement of treatment group’s content knowledge and explanation quality from post- to follow-up test

Evaluation
– Goodwin’s model of explanation in organic chemistry
– supports structured investigation and consistent explanation in accordance with Goodwin’s model
– adaptable to different deductive and inductive instructional strategies

Educational Basis
– Ausubel’s theory of meaningful learning as construction and reconstruction of knowledge structures
– Goodwin’s model of explanation in organic chemistry

Educational Concept
– utilizes inventing with contrasting cases (ICC)
 – contrasting cases cover broad range of effects
 – variation of one distinctive structural feature per case set focus on substituents’ impact
– supports structured investigation and consistent explanation in accordance with Goodwin’s model

The Learning Environment

Reaction Mechanism

Observation Step
– experiment/data-based testing of invented explanations (deductive process)
– observation prompt and induction of cognitive dissonance (inductive process)

Comparison Step
– model-based investigation of structural information
– identification of differences and commonalities across cases

Introduction and Evaluation

Implementation
– into lectures and review seminars (including investigation of prepared data)
– into laboratory classes (including investigation of experimentally collected data)

Further Evaluation
– more detailed investigation of concept-based reasoning and meaningful understanding applying
 – interview studies and qualitative content analysis
 – concept mapping

Prospects

Enhancement
– additional contrasting cases providing access to concepts of position dependency and steric hindrance

References

Contact

Andreas Trabert
Philippus-Universität Marburg
Fachbereich Chemie
AG Fachdidaktik der Organischen Chemie – Dr. Schween
Hans-Meinecke-Straße 4
D-35032 Marburg/Lahn
andreas.trabert@chemie.uni-marburg.de
www.uni-marburg.de/fb15/ag-schween

This project is supported within the framework of «Qualitätsoffensive Lehrerbildung» by German federal and state governments with fundings of the German Federal Ministry of Education and Research under grant number 01A1504.