Direkt zum Inhalt
 
 
emotio_sfb_1083.jpg
 
  Startseite  
 
Sie sind hier:» Universität » SFB 1083 » Goals (Ziele)

Goals

Internal interfaces between two solids play a decisive role in modern materials sciences and their technological applications. Among the most prominent examples are certainly semiconductor devices which have been miniaturized to such an extent that their optical and electronic properties are determined decisively by interfaces. In the future, the importance of internal, solid/solid interfaces is expected to increase further due to the development of new hybrid materials. One type of these materials combines specific properties of metals or inorganic semiconductors on the one hand, with those of organic or biomaterials on the other hand. Another type of composite material is created by stacking different two-dimensional solids, such as graphene or transition metal dichalcogenides, together. In both cases, the interaction of different solids across the interface and specific interface properties are crucial to the resulting functionality. Despite their enormous importance, our microscopic understanding of internal interfaces is lagging behind that of volume or surface properties. The main reason for this knowledge gap is the experimental difficulty to detect and isolate the weak interface signature from the signals of the dominant bulk.
The objective of the collaborative research centre SFB 1083 is to close this gap by collaboration between researchers from chemical synthesis, semiconductor physics, surface science, structural analysis and laser spectroscopy. Primarily, our research is not directed towards specific functional materials, as those generally consist of many, frequently not well-defined interfaces. Instead, we focus on model systems with specially prepared internal interfaces. We structurally characterize these interfaces on the atomic level and investigate their optical and electronic properties systematically. In this way, we want to achieve a detailed microscopic understanding of chemical bonding, electronic coupling and energy transfer for different classes of heterointerfaces. We then can make use of this knowledge and tailor interfaces for specific applications and construct devices with novel properties and functions.
interface-interphase.jpg

Ziele

Innere Grenzflächen zwischen zwei Festkörpern spielen in den modernen Materialwissenschaften und ihren technischen Anwendungen eine wichtige Rolle. Ein Paradebeispiel sind Halbleiterbauelemente, die soweit miniaturisiert wurden, dass ihre optischen und elektronischen Eigenschaften entscheidend von den Grenzflächen bestimmt werden. Noch weiter steigen wird die Bedeutung innerer Grenzflächen in künftigen Hybridmaterialien. So werden zunehmend die Eigenschaften von Metallen oder anorganischen Halbleitern mit denen von organischen Materialien und Bio-Materialien verknüpft. Andere neue Materialien entstehen durch das Aufeinanderstapeln verschiedener zweidimensionaler Festkörper. In beiden Fällen spielen die Wechselwirkung der unterschiedlichen Festköper über ihre innere Grenzfläche sowie die spezifischen Eigenschaften dieser Grenzfläche eine herausragende Rolle für die Funktionalität. Trotz ihrer enormen Bedeutung hinkt unser mikroskopisches Verständnis der Struktur und Dynamik vergrabener, innerer Grenzflächen dem Verständnis der Volumen- und Oberflächeneigenschaften der Materialien aber weit hinterher.
Das Ziel des Sonderforschungsbereichs 1083 ist es, diese Lücke in enger Zusammenarbeit zwischen chemischer Synthese, Halbleiterphysik, Oberflächenphysik und -chemie, Strukturanalyse und Laserspektroskopie zu schließen. Im Vordergrund der Untersuchungen stehen dabei keine konkreten Funktionsmaterialien, da diese in der Regel über viele, oft nicht gut definierte Grenzflächen verfügen. Vielmehr werden eigens entwickelte Modellsysteme mit einzelnen, speziell präparierten inneren Grenzflächen auf der atomaren Skala strukturell charakterisiert und ihre optischen und elektronischen Eigenschaften systematisch studiert. Damit soll für unterschiedliche Klassen von Heterogrenzflächen erreicht werden, dass die chemische Bindung, die elektronische Kopplung und der Energietransfer mikroskopisch genau bekannt und soweit möglich vorhersagbar werden. Mittel- und langfristig soll dieses Wissen dann genutzt werden, um Grenzflächen für neue Anwendungen maßzuschneidern und so Materialien und Bauelemente mit neuartigen Eigenschaften und Funktionalitäten herstellen zu können.

Zuletzt aktualisiert: 08.05.2018 · armbrusn

 
 
 
Philipps-Universität Marburg

Sonderforschungsbereich 1083, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
Tel. +49 6421 28-24223, Fax +49 6421 28-24218, E-Mail: info@uni-marburg.de

URL dieser Seite: https://www.uni-marburg.de/sfb1083/goals

Impressum | Datenschutz