Direkt zum Inhalt
Sie sind hier:» Universität » SFB 1083 » Projects » A9 Dehnen

Project A9: Synthesis and Properties of Molecular Inorganic/Inorganic/Organic Multilayer Clusters

Principle Investigator: Prof. Dr. Stefanie Dehnen (Marburg, Dept. of Chemistry)


a9_logo.pngThis project focuses on the understanding of geometric and electronic structures of interfaces at the molecular scale. Our target compounds, which are structurally analyzed with atomic resolu-tion (±1·1012 m) by means of X-ray diffraction, are multilayer clusters comprising an inorganic core-shell cluster with an inner tetrel dichalcogenide TE2 core (T = Sn, Ge, E = S, Se, Te) and a first shell of a transition metal chalcogenide MxEy (M’ = transition metal), which is finally surrounded by a second shell of covalently bound organic ligands RF with reactive groups. The core and the first shell represent molecular models for layered (di-)chalcogenides. By varying M, T and E, we explore the components’ effect on electronic properties in comparison with the respective, stacked 2D systems. The latter will be produced and investigated in collaboration with the group of David C. Johnson (Eugene, OR/USA). The organic ligand that will be developed in collaboration with project A8 (Koert) allows for interaction with (semi-)metal atoms or surfaces. This parallels project A4 (Gottfried) on the molecular level. Electronic excitations will be studied in collaboration with projects B2 and B3 (Chatterjee, M Koch/Heimbrodt). Collaboration with project A3 (Jakob) will serve to investigate vibrational modes of the inorganic layers within both the cluster and in the 2D materials. The project will at the same time provide benchmark systems for the development of electron microscopy techniques in project A5 (Volz). All project steps will be subject to ongoing optimization based on the observations.

Project-Related Publications

  1. E. Leusmann, M. Wagner, N.W. Rosemann, S. Chatterjee, S. Dehnen Synthesis, Crystal Structure and Photoluminescence Studies of a Ruthenocenyl-Decorated Sn/S Cluster Inorg. Chem. 53, 4228 (2014).
  2. Z. You, R. Möckel, J. Bergunde, S. Dehnen Organotin-Oxido Cluster-Based Multiferrocenyl Complexes by Hydrolysis of Ferrocenyl-Functionalized Organotin Chlorides Chem. Eur. J. 20, 13491 (2014).
  3. N. Rinn, J. P. Eußner, W. Kaschuba, X. Xie, S. Dehnen Formation and Reactivity of Organo-Functionalized Tin Selenide Clusters Chem. Eur. J. 22, 3094 (2016).

Zuletzt aktualisiert: 16.03.2018 · armbrusn

Philipps-Universität Marburg

Sonderforschungsbereich 1083, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
Tel. +49 6421 28-24223, Fax +49 6421 28-24218, E-Mail: info@uni-marburg.de

URL dieser Seite: https://www.uni-marburg.de/sfb1083/projects/A9

Impressum | Datenschutz