30.04.2020 Negative Teilchen richtig transportiert

Deutsche Forschungsgemeinschaft (DFG) fördert neue Forschungsgruppe zur Proteinfamilie SLC26 mit rund vier Millionen Euro

Foto von 3D-Modell
Foto: Christina Mühlenkamp
SLC26-Transportproteine, hier im 3D-Modell, sind an zahlreichen Prozessen im menschlichen Körper beteiligt - in der neuen Forschungsgruppe sollen sie genauer analysiert werden.

SLC26 bezeichnet eine Familie von Transportproteinen, die an zahlreichen Prozessen im menschlichen Körper beteiligt ist – beispielsweise in der Niere und im Darm. Es ist bekannt, dass Fehlfunktionen dieser Transporter schwerwiegende gesundheitliche Folgen haben können. Warum das so ist, und wie diese Proteinmaschinchen unter normalen Bedingungen die Organfunktion ermöglichen, dazu steht die Forschung noch ganz am Anfang. Eine neue Forschungsgruppe unter Federführung der Philipps-Universität Marburg wird nun einzelne Proteine der Familie von der molekularen bis zur organischen Ebene analysieren und dabei ihre Struktur, Funktion und Regulation unter die Lupe nehmen. Langfristiges Ziel sind neue Behandlungsoptionen bei Krankheiten wie Bluthochdruck, entzündlichen Darmerkrankungen oder Mukoviszidose. Die DFG fördert das Vorhaben mit rund vier Millionen Euro über einen Zeitraum von vier Jahren.

Alle unsere Zellen und Körperflüssigkeiten enthalten große Mengen an gelösten, negativ geladenen Teilchen, sogenannten Anionen. Deren Konzentration muss sehr genau eingestellt werden, damit es nicht zu schwerwiegenden Entgleisungen der Körperfunktion kommt. So muss zum Beispiel das Chlorid, welches wir als Bestandteil des Kochsalz zu uns nehmen, vom Darm in den Körper aufgenommen und über die Niere in ausreichender Menge wieder ausgeschieden werden. Dabei wird das Anion über die Zellmembran transportiert. Eine herausgehobene Stellung nehmen beim Transport von Anionen die SLC26-Transporter ein, eine Familie von Proteinen, die sich unter anderem in den Membranen der Zellen von Darm und Niere befinden. „Diese Familie ist für lebenswichtige Transportprozesse im menschlichen Körper verantwortlich. Diese wichtige Rolle wurde wissenschaftlich schon ausführlich dokumentiert“, sagt Prof. Dr. Dominik Oliver, Sprecher der neuen Forschungsgruppe. „Was allerdings in der Forschung bislang zu kurz kam, ist die genaue Analyse der SLC26-Proteine. Im Grunde wissen wir kaum etwas zur molekularen Funktionsweise der Proteine oder ihrer Integration in die Zelle. Wir freuen uns sehr, dass wir mit der neuen Forschungsgruppe diese Schritte nun gehen und einen elementaren Beitrag zum Verständnis der Proteine und der unterschiedlichen damit assoziierten Krankheitsbilder leisten können“, sagt Oliver.     

Die neue Forschungsgruppe bringt Wissenschaftlerinnen und Wissenschaftler der Philipps-Universität Marburg, der Goethe-Universität Frankfurt, des Max-Planck-Instituts für molekulare Zellbiologie und Genetik Dresden, des Forschungszentrums Jülich, der Universität Rostock, der Heinrich-Heine-Universität Düsseldorf, der Medizinischen Hochschule Hannover sowie der Charité – Universitätsmedizin Berlin zusammen. Alle Mitglieder der FOR 5046 bringen langjährige Erfahrungen in der Forschung mit SLC26 oder ähnlichen Transportproteinen mit. Das Besondere an der neuen Forschungsgruppe ist die erstmalige enge Vernetzung einer breiten Expertise - von der molekularen Biophysik bis hin zum krankheitsbezogenen klinischen Fachwissen. Gleichzeitig werden hier erstmals modernste Methoden auf diese spezielle Proteinfamilie angewendet, darunter die computerbasierte Simulation von Molekülbewegungen und die Analyse von lebenden Zellen aus Patientenbiopsien. Gemeinsam werden die Wissenschaftlerinnen und Wissenschaftler in der Forschungsgruppe „FOR 5046 - Integrative Analyse epithelialer SLC26 Anionentransporter – von der molekularen Struktur zur Pathophysiologie“ Struktur, Funktion und Regulation ausgewählter SLC26-Proteine analysieren: Welche dreidimensionale Struktur haben die Proteine? Wie ermöglicht diese Struktur die Aufnahme von gelösten Teilchen in die Zelle? Wie greifen die Proteine ineinander, welches Zusammenwirken entsteht? Welche Rolle nehmen die Proteine im Zellgeschehen ein? Diesen und weiteren Fragen widmen sich die Forscherinnen und Forscher.

Das Team um Prof. Dr. Dominik Oliver wird sich dabei auf einige wenige Proteine aus der SLC26-Familie konzentrieren, etwa SLC26A3. Dieses Protein befindet sich vor allem in der Zellmembran der Darmschleimhaut und ist mit der Kongenitalen Chlorid-Diarrhoe, einer schweren Durchfallerkrankung, assoziiert. „Wir werden verschiedene Technologien nutzen, um die molekulare Anatomie des Proteins abzubilden – unter anderem können wir in Echtzeit die verschiedenen Konformationen, also die räumliche Anordnung des Proteins, und die Übergänge zwischen den verschiedenen Positionen messen“, sagt Oliver. Darüber hinaus sollen bei SLC26A3 gezielte Mutationen hervorgerufen werden, um deren Auswirkung auf die Organfunktion analysieren zu können. Zum Einsatz kommen dabei auch sogenannte Organoide, also einige Millimeter große, organähnliche Mikrostrukturen. Diese werden zum Beispiel im Labor aus menschlichen Zellen erzeugt und bilden weitgehend die Funktion, aber auch Erkrankungen von kompletten Organen nach. „Mit diesen und anderen Methoden werden wir wichtige Rückschlüsse auf die Struktur, Regulation und Physiologie der SLC26-Familie ziehen können“, so Oliver. In Marburg werden die Untersuchungen am Institut für Physiologie und Pathophysiologie am Fachbereich Medizin der Philipps-Universität durchgeführt. Das Institut forscht in grundlagenwissenschaftlichen wie auch translationalen Projekten im Bereich der molekularen Zell- und Neurophysiologie. Andere aktuelle Projekte im Institut widmen sich den Sinneszellen des Innenohres oder auch der Regulation einer weiteren Klasse von Transportproteinen, sogenannten Ionenkanälen.

Kontakt