04.12.2020 Verstehen, um zu heilen: Bakterieller Kommunikation auf der Spur

Philipps-Universität Marburg wirbt unter Beteiligung der Justus-Liebig-Universität Gießen und des Marburger Max-Planck-Instituts für Terrestrische Mikrobiologie neuen LOEWE-Schwerpunkt ein

Wissenschaftlerin schaut in Mikroskop
Foto: Christina Mühlenkamp
Im Labor wird das Zusammenspiel von Immunzellen des Körpers und wichtigen bakteriellen Krankheitserregern untersucht.

Wie kommunizieren Bakterien mit menschlichen Entzündungszellen? Dieses Thema steht im Zentrum des neuen LOEWE-Schwerpunkts „Diffusible Signals“ (Impact of diffusible signals at human cell-microbe interfaces). Die hessische Landesregierung fördert „Diffusible Signals“ in der 13. Staffel der hessischen Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) mit insgesamt etwa 4,8 Millionen Euro.

Bakterielle Infektionskrankheiten gehören weltweit zu den häufigsten Todesursachen. Seit rund 100 Jahren stehen Antibiotika als äußerst erfolgreiche Medikamente zur Bekämpfung bakterieller Infektionen zur Verfügung. Durch Antibiotika-Resistenzen werden die wichtigsten Medikamente gegen Infektionskrankheiten zunehmend wirkungslos. Wissenschaftlerinnen und Wissenschaftler der Philipps-Universität Marburg, der Justus-Liebig-Universität Gießen und des Max-Planck-Instituts für Terrestrische Mikrobiologie in Marburg wollen mit neuesten Methoden und Techniken die bakterielle Kommunikation als zentrale Grundlage der Infektionsprozesse untersuchen. Neue Behandlungsansätze sollen durch Veränderung dieser Kommunikation die menschliche Immunabwehr stärken sowie den bakteriellen Angriff schwächen. Denn offenbar werden die Entstehung und der Verlauf von Infektionskrankheiten, aber auch der Schutz davor, viel stärker als bisher angenommen, von den Interaktionen der Bakterien untereinander und mit dem Menschen beeinflusst.

„Infektionskrankheiten gehören zu den häufigsten Todesursachen weltweit. Durch die LOEWE-Förderung können wir als interdisziplinäres Team den Austausch zwischen Bakterien und Immunzellen erforschen und daraus neue Therapieansätze entwickeln“, sagt der Sprecher des neuen LOEWE-Schwerpunkts, Prof. Dr. Bernd Schmeck von der Philipps-Universität Marburg.

„Die Erforschung bakterieller Kommunikationswege und ihrer Bedeutung für das Infektionsgeschehen ist eines der großen Themen unserer Zeit. Der erneute Erfolg in der LOEWE-Förderung zeigt, dass die Marburger Infektiologie und Mikrobiologie gemeinsam mit dem Max-Planck-Institut und ihren Partnern vom Forschungscampus Mittelhessen in diesem Feld zukunftsweisende Beiträge leisten kann“, sagt Prof. Dr. Michael Bölker, Vizepräsident für Forschung und Internationales an der Philipps-Universität Marburg.

Gemeinsam erforschen Wissenschaftlerinnen und Wissenschaftler aus der klinischen Infektiologie und Infektionsbiologie, grundlagenorientierter Mikrobiologie und Bioinformatik den Austausch löslicher (diffusibler) Signale an den Grenzflächen klinisch wichtiger Bakterien und menschlicher Entzündungszellen. Ist die Produktion oder Interpretation dieser löslichen Signale gestört, kann dies zu Krankheiten führen oder Krankheiten verschlimmern.  

Diffusible Signale werden zum Beispiel an den Grenzflächen zwischen Mikrobe und Wirtszelle am medizinischen Modell der Interaktion von Monozyten/Makrophagen mit gramnegativen Enterobacteriaceae untersucht, wie sie bei Blutvergiftungen und Lungenentzündungen als den häufigsten infektiologischen Todesursachen vorkommt. Ziel ist es, neue Einblicke in Infektionsprozesse zu gewinnen und einen Beitrag zur Entwicklung neuer Behandlungsformen für Infektionskrankheiten zu leisten.

Beteiligungen an „Diffusable Signals“:

Die Forschungskooperation „Diffusible Signals“ besteht aus insgesamt 13 Wissenschaftlerinnen und Wissenschaftlern der Universitäten Marburg und Gießen und des Max-Planck-Instituts für terrestrische Mikrobiologie, Marburg. In insgesamt 11 Teilprojekten (UMR: 6, JLU: 3, MPI: 2) werden Kompetenzen aus der biologischen Grundlagenforschung (Mikrobiologie, Biochemie und Biophysik), der Bioinformatik, der Infektionsbiologie und der klinischen Infektiologie miteinander vernetzt. Damit kombiniert, ergänzt und vertieft der LOEWE-Schwerpunkt die Profilbereiche der beteiligten Institutionen. Die Laufzeit beträgt vier Jahre, von 2021 bis 2024.

Weitere Beteiligungen der Universität Marburg an LOEWE-Schwerpunkten der 13. Förderstaffel:

iCANx: Cancer – Lung (Disease) Crosstalk: Tumor and Organ Microenvironment

Wissenschaftliche Koordination: Prof. Dr. Till Acker; Federführung: Justus-Liebig-Universität Gießen; Antragspartner: Philipps-Universität Marburg, Max-Planck-Institut für Herz- und Lungenforschung Bad Nauheim

Krebs ist als weltweit zweithäufigste Todesursache ein globales Gesundheitsproblem. Das Auftreten von Lungentumoren und Tochtergeschwulsten in der Lunge verringert die Lebensqualität und -erwartung erheblich. Wie schnell Lungentumore wachsen und wie gefährlich sie sind, hängt entscheidend von ihrer Wechselwirkung mit der Umgebung ab. Ziel des LOEWE-Schwerpunkts „iCANx“ ist zu untersuchen, wie Tumorzellen die Lunge im wechselseitigen Austausch mit dem Organmikromilieu besiedeln und welchen Einfluss Erkrankungen wie COPD, pulmonale Hypertonie und Fibrose hierauf haben. Das verspricht innovative Therapie- und Heilungsansätze, um etwa die Besiedlung der Lunge durch Tochtergeschwulste zu verhindern.

PriOSS – Prinzipien von oberflächengestützten Synthesestrategien

Wissenschaftliche Koordination: Prof. Dr. André Schirmeisen; Federführung: Justus-Liebig-Universität Gießen; Antragspartnerin: Philipps-Universität Marburg

Komplexe, funktionale Nanostrukturen können etwa als elektronische Bauelemente in Mikrochips und Quanten-Rechnern künftiger Generationen eingesetzt werden. In jüngster Zeit hat sich herausgestellt, dass solche Nanostrukturen sehr erfolgreich direkt auf Oberflächen zusammengebaut werden können, man spricht von „oberflächengestützter Synthese“ („on-surface synthesis“). Sie steckt aber im Gegensatz zur etablierten Synthese in Lösungen, wie sie seit 200 Jahren praktiziert wird, noch in den Kinderschuhen. Ziel des LOEWE-Schwerpunkts ist es, grundlegende Modelle der oberflächengestützten Synthese zu entwickeln und einen Werkzeugkasten für diese neue Methodik zu schaffen.

Kontakt