Hauptinhalt

Erfindung aus Marburg geht in die industrielle Produktion

Hersteller von Halbleitermaterialien nutzt künftig ressourceneffizienteres Verfahren

Foto: © UMICORE AG Hanau

Foto: Oberer Teil einer drei Stockwerke großen Produktionsanlage für Trimethylgallium (TMG)

„Green Chemistry“ aus Marburg macht regenerative Energiegewinnung und -nutzung nachhaltiger: Am vergangenen Freitag, den 23. Juni 2017 hat das Unternehmen UMICORE in Hanau eine neuartige Produktionsanlage eingeweiht, in dem ein an der Philipps-Universität entwickeltes Verfahren zum Einsatz kommen soll; mit diesem lässt sich ein Vorprodukt zur Herstellung von LED-Leuchten und hocheffizienten Solarzellen energieeffizienter und abfallsparender produzieren als bisher. Die hessische LandesOffensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz „LOEWE“ unterstützte die Forschungsarbeit der Marburger Chemiker mit 300.000 Euro. „Dass es ein Patent der Philipps-Universität bis in die technische Umsetzung im Industriemaßstab schafft, belegt, dass unsere Grundlagenforschung immer wieder auch Beiträge für die Bewältigung von aktuellen technischen oder gesellschaftlichen Fragestellungen liefert“, erklärt Dr. Friedhelm Nonne, Kanzler der Philipps-Universität. „Die erheblichen Investitionen der Universität und des Landes Hessen in die Marburger Chemie tragen hier Früchte, die uns allen zugutekommen.“

Leistungsfähige Solarzellen, LED-Leuchten und andere optoelektronische Bauelemente dienen der effizienten Erzeugung und Nutzung regenerativer Energien. „Für ihre Herstellung verwendet man häufig III-V-Halbleiter, die zum Beispiel aus Gallium und einem Element der 5. Hauptgruppe des Periodensystems bestehen, etwa Stickstoff, Phosphor oder Arsen“, erläutert der Chemiker Professor Dr. Jörg Sundermeyer von der Philipps-Universität, der das Marburger Forschungsteam leitete.

Die Produktion solcher Halbleitermaterialien beruht auf der Galliumquelle Trimethylgallium (TMG). Dieses Schlüsselmolekül für die Entwicklung erneuerbarer Energien soll in der Hanauer Anlage künftig über ein neues Verfahren produziert werden. „Beim besseren Verständnis der zugrunde liegenden Chemie, sowie weiterer wertschöpfender Verbesserungen, die in einer künftigen Anlagenmodifikation umgesetzt werden sollen, haben die Forscher der Universität Marburg wesentliche Beiträge geleistet“, sagt die Pressestelle von UMICORE. Auch die Marburger Firma „NAsP III-V“, eine Ausgründung der Philipps-Universität, beteiligte sich an dem Entwicklungsprojekt.

„Das Verfahren liefert eine höhere Ausbeute als bislang üblich“, erklärt Sundermeyer. „Die neue Technologie kostet weniger Prozessenergie und arbeitet zudem mit wesentlich preisgünstigeren Startmaterialien, um zu dem wertvollen metallorganischen Zielprodukt TMG zu gelangen; hierfür wird kein umweltbelastendes organisches Lösungsmittel benötigt. Dadurch wird das an Luft selbstentzündliche TMG auch sicherer als bisher produziert.“ Welch hohen Stellenwert die neue chemische Prozesstechnologie für die Herstellung stromsparender Lichtquellen sowie leistungsfähiger Solarzellen besitzt, belegte unter anderem die Anwesenheit von Bundesumweltministerin Dr. Barbara Hendricks bei der Einweihung der Anlage.

Die Philipps-Universität und die Firma UMICORE reichten drei gemeinsame Patentanmeldungen [1-3] zur Produktion von Trimethylgallium und Trimethylindium ein, berichtet Sundermeyer. „Dies ist das erste von zirka 50 Patenten meiner Mitarbeiter und mir, das in die industrielle Verwertung geht“, legt der Chemiker dar, der Anorganische Chemie an der Philipps-Universität lehrt: „Ich bin mir nicht sicher, ob ich dies in meiner Forscherkarriere ein zweites Mal erleben darf!

[1-3] WO2015024893 (A1); WO2015136049 (A1); US9617284 (B2).

Zitiert aus der Pressemitteilung der Universität Marburg vom 28.06.2017. Dieser Erfolg ist ein Beleg für die Schlagkraft des Forschungscampus Mittelhessen (FCMH), eines Innovationsnetzwerkes der beiden Universitäten Marburg und Gießen sowie der Technischen Hochschule Mittelhessen, unter dem Campus-Schwerpunkt "Material, Molekül und Energie".