Hauptinhalt

Publikationen Prof. Dr. Robert R. Junker

[102] Structural shifts in plant functional diversity during biogeomorphic succession: Moving beyond taxonomic investigations in an alpine glacier foreland. Junker R R, Ohler LM, Otto JC, Kraushaar S (2024) Earth Surface Processes and Landforms, 1–17;  https://doi.org/10.1002/esp.5838

[101] Geographic distribution of terpenoid chemotypes in Tanacetum vulgare mediates tansy aphid occurrence but not abundance. Rahimova H, Neuhaus-Harr A, Clancy M V, Guo Y, Junker R R, Ojeda-Prieto L, Petrén H, Senft M, Zytynska S E, Weisser W W, Heinen R,  Schnitzler JP (2024) Oikos, 2024: e10320; https://doi.org/10.1111/oik.10320

[100] Vertically Stratified Interactions Of Nectarivores And Nectar-Inhabiting Bacteria In A Liana Flowering Across Forest Strata. Thiel S, Gottstein M, Heymann EW, Kroszewski J, Lieker N,  Tello NS, Tschapka M, Junker RR, Heer K (2024) American Journal of Botany, Volume 111, Issue 3; https://doi.org/10.1002/ajb2.16303

[99] Floral and pollinator functional diversity mediate network structure along an elevational gradient. Aguirre L A, Junker R R (2024) Alpine Botany; https://doi.org/10.1007/s00035-024-00308-w

[98] Adding experimental precision to the realism of field observations: Plant communities structure bacterial communities in a glacier forefield. He X, Hanusch M, Böll L, Lach A, Seifert T, Junker RR (2024) Environmental Microbiology, 2024;26:e16590; https://doi.org/10.1111/1462-2920.16590

[97] Catchment-scale patterns of geomorphic activity and vegetation distribution in an alpine glacier foreland (Kaunertal Valley, Austria). Haselberger S, Scheper S, Otto J-C, Zangerl U, Ohler L-M, Junker RR, Kraushaar S (2023) Frontiers in Earth Science, 11(2023);  https://doi.org/10.3389/feart.2023.1280375

[96] Ecosystem consequences of invertebrate decline. Eisenhauer N, Ochoa-Hueso R, Huang Y, Barry KE, Gebler A, Guerra CA, Hines J, Jochum M, Andraczek K, Bucher SF, Buscot F, Ciobanu M, Chen H, Junker R R, Lange M, Lehmann A, Ulrich J, Rillig M, Römermann C, Weigelt A, Schmidt A, Türke M (2023) Current Biology, 33:1-10; https://doi.org/10.1016/j.cub.2023.09.012

[95] Tracking succession by means of 3D scans of plant communities in a glacier forefield to infer assembly processes. He X, Hanusch M,  Saueressig L, Schriever A, Seifert T, Villhauer H, Zieschank V, Junker RR (2023) Oikos, 2023: e10095; https://doi.org/10.1111/oik.10095

[94] Exploring the Frequency and Distribution of Ecological Non-monotonicity in Associations among Ecosystem Constituents. Hanusch M,  He X,  Janssen S,  Selke J, Trutschnig W, Junker RR (2023) Ecosystems; https://doi.org/10.1007/s10021-023-00867-9

[93] The great escape: patterns of enemy release are not explained by time, space, or climate. Xirocostas Z, Ollerton J, Tamme R, Peco B, Lesieur V, Slavich E, Junker RR, Partel M, Sathyamurthy R, Uesugi A, Bonser S, Chiarenza G, Hovenden M, Moles A (2023) Proceedings of the Royal Society B, 290 (2005); https://doi.org/10.1098/rspb.2023.1022

[92] Fungicides and strawberry pollination – effects on floral scent, pollen attributes and bumblebee behaviour. Voß A-C, Hauertmann M, Laufer M-C, Lach A, Junker RR, Eilers EJ (2023) PLoS One, 18(7):e0289283; https://doi.org/10.1371/journal.pone.0289283

[91] Proglacial slopes are protected against erosion by trait diverse and dense plant communities associated with specific microbial communities. Ohler L-M, Haselberger S, Janssen S, Otto J-C, Kraushaar S, Junker RR (2023) Basic and Applied Ecology, 71:57-71; https://doi.org/10.1016/j.baae.2023.05.008

[90] Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. Sasidharan R, Junker RR, Eilers EJ, Müller C (2023) Annals of Botany, mcad064; https://doi.org/10.1093/aob/mcad064

[89] Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities. Zieschank V, Junker RR (2023) Frontiers in Plant Science, 14:1141554; https://doi.org/10.3389/fpls.2023.1141554

[88] Inter- and intraspecific phytochemical variation correlate with epiphytic flower and leaf bacterial communities. Gaube P, Marchenko P, Müller C, Schweiger R, Tenhaken R, Keller A, Junker RR (2023) Environmental Microbiol., 2023 Apr 3.; https://doi.org/10.1111/1462-2920.16382

[87] Accuracy of mutual predictions of plant and microbial communities vary along a successional gradient in an alpine glacier forefield. He X, Hanusch M, Ruiz-Herhandez V, Junker RR (2023) Frontiers in Plant Science, 13; https://doi.org/10.3389/fpls.2022.1017847

[86] Effect of Tannin Furanic Polymer in Comparison to Its Mimosa Tannin Extract on the Growth of Bacteria and White-Rot Fungi. Eckardt J, Tondi G, Fanchin G, Lach A, Junker RR (2023) Polymers, 15(1):175; https://doi.org/10.3390/polym15010175

[85] Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. Petren H, Köllner TG, Junker RR (2022) New Phytologist, 237(6):2478-2492; https://doi.org/10.1111/nph.18685

[84] qad: An R-package to detect asymmetric and directed dependence in bivariate samples. Griessenberger F, Trutschnig W, Junker RR (2022) Methods in Ecology and Evolution; 13(10):2138-2149; https://doi.org/10.1111/2041-210X.13951

[83] Sugar Concentration, Nitrogen Availability, and Phylogenetic Factors Determine the Ability of Acinetobacter spp. and Rosenbergiella spp. to Grow in Floral Nectar. Morales-Poole JR, de Vega C, Tsuji K, Jacquemyn H, Junker RR, Herrera CM, Michiels. C, Lievens B, Álvarez-Pérez S (2022) Microbiology Ecology, 86:377–391; https://doi.org/10.1007/s00248-022-02088-4

[82] Floral and reproductive traits are an independent dimension within the plant economic spectrum of temperate central Europe. E-Vojtkó A, Junker RR, de Bello F, Götzenberger L (2022) New Phytologist; 236(5):1964-1975; https://doi.org/10.1111/nph.18386

[81] Complex floral traits shape pollinator attraction to ornamental plants. Erickson E, Junker RR, Ali JG, McCartney N, Patch HM, Grozinger CM, (2022) Annals of Botany, 130(4):561–577; https://doi.org/10.1093/aob/mcac082

[80] Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Hanusch M, He X, Ruiz-Hernández V, Junker RR (2022) Communications Biology, 5:424; https://doi.org/10.1038/s42003-022-03372-2

[79] Towards an animal economics spectrum for ecosystem research. Junker RR, Albrecht J, Becker M, Keuth R, Farwig N, Schleuning M (2022) Functional Ecology, 37(1):57-72; https://doi.org/10.1111/1365-2435.14051

[78] On a multivariate copula-based dependence measure and its estimation. Griessenberger F, Junker RR, Trutschnig W (2022) Electronic Journal of Statistics, 16(1):2206-2251; https://doi.org/10.1214/22-EJS2005

[77] Metabolic phenotype as important and dynamic niche dimension of plants. Müller C, Junker RR (2022) New Phytologist, 234(4):1168–1174; https://doi.org/10.1111/nph.18075

[76] Manipulation of phyllosphere bacterial communities reversibly alters the plant microbiome and leaf traits in the field. Ohler L-M, Seeleitner S, Haselberger S, Kraushaar S, Otto J-C, Mitter B, Junker RR (2021) Alpine Botany, 132:301-314; https://doi.org/10.1007/s00035-021-00273-8

[75] Editorial: Flower Metabolism and Pollinators. Borghi M, Junker RR, Lucas-Barbosa D, Zych M (2021) Frontiers in Plant Science, 10:3389; https://doi.org/10.3389/fpls.2021.776978

[74] Divergent assembly processes? A comparison of the plant and soil microbiome with plant communities in a glacier forefield. Junker RR, He X, Otto JC, Ruiz-Hernández V, Hanusch M (2021) FEMS Microbiology Ecology, 97(10):fiab135; https://doi.org/10.1093/femsec/fiab135

[73] Humans share more preferences for floral phenotypes with pollinators than with pests. Ruiz-Hernández V, Joubert L, Rodríguez-Gómez A, Artuso S, Pattrick JG, Gomez Di Marco P, Eckerstorfer S, Brandauer S, Trcka-Rojas C, Martínez-Reina L, Booth J, Lau-Zhu A, Weiss J, Bielza P, Glover B, Junker RR, Egea-Cortines M (2021) Frontiers in Plant Science, 10:3389; https://doi.org/10.3389/fpls.2021.647347

[72] Editorial overview: Tripartite interactions: microbial influencers of plant–pollinator interactions. Vannette RL, Junker RR (2021) Current Opinion in Insect Science, 44:A1–A2; https://doi.org/10.1016/j.cois.2021.06.004

[71] Invertebrate decline reduces bacterial diversity associated with leaves and flowers. Junker RR, Eisenhauer N, Schmidt A, Türke M (2021) FEMS Microbiology Ecology,97(7):fiab088; https://doi.org/10.1093/femsec/fiab088

[70] Volatile organic compound patterns predict fungal trophic mode and lifestyle. Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR, Polle A, Benz JP, Pritsch K, Schnitzler J-P, Rosenkranz M (2021) Communications Biology, 4:673; https://doi.org/10.1038/s42003-021-02198-8

[69] Quantification of biogeomorphic interactions between small-scale sediment transport and primary vegetation succession on proglacial slopes of the Gepatschferner, Austria. Haselberger S, Ohler, L-M, Junker RR, Otto J-C, Glade T, Kraushaar S (2021) Earth Surface Processes and Landforms, 46(10):1941-1952; https://doi.org/10.1002/esp.5136

[68] 16S rRNA gene-based microbiome analysis identifies candidate bacterial strains that increase the storage time of potato tubers. Buchholz F, Junker RR, Samad A, Antonielli L, Sarić N, Kostić T, Sessitsch A, Mitter B (2021) Scientific Reports, 11:3146; https://doi.org/10.1038/s41598-021-82181-9

[67] Evolution of debris cover on glaciers of the Eastern Alps, Austria, between 1996 and 2015. Fleischer F, Otto JC, Junker RR, Hölbling D (2021) Earth Surface Processes and Landforms, https://doi.org/10.1002/esp.5065

[66] Drought-induced reduction in flower size and abundance correlates with reduced flower visits by bumble bees. Kuppler J, Wieland J, Junker RR, Ayasse M (2021) AoB PLANTS, 13(1): plab001; https://doi.org/10.1093/aobpla/plab001

[65] Changes amid constancy: flower and leaf microbiomes along land use gradients and between bioregions. Gaube P, Junker RR, Keller A (2021) Basic and Applied Ecology, 50:1-15; https://doi.org/10.1016/j.baae.2020.10.003

[64] Estimating scale-invariant directed dependence of bivariate distributions. Junker RR, Griessenberger F, Trutschnig W (2021) Computational Statistics & Data Analysis, 153:107058; https://doi.org/10.1016/j.csda.2020.107058

[63] Myco- and photobiont associations in crustose lichens in the McMurdo Dry Valleys (Antarctica) reveal high differentiation along an elevational gradient. Wagner M, Bathke AC, Cary SC, Green TGA, Junker RR, Trutschnig W, Ruprecht U (2020) Polar Biology, 43:1967-1983; https://doi.org/10.1007/s00300-020-02754-8

[62] Insect herbivory strongly modifies mountain birch volatile emissions. Rieksta J, Li T, Junker RR, Jepsen JU, Ryde I, Rinnan R (2020) Frontiers in Plant Science, 11:558979; https://doi.org/10.3389/fpls.2020.558979

[61] The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees. Scheiner R, Strauss S, Thamm M, Farré-Armengol G, Junker RR (2020) Insects, 11(10):692; https://doi.org/10.3390/insects11100692

[60] Identifying tree traits for cooling urban heat islands – a cross-city empirical Analysis. Helletsgruber C, Gillner S, Gulyás Á, Junker RR, Tanács E, Hof A (2020) Forests, 11(10):1064; https://doi.org/10.3390/f11101064

[59] Candida metrosideri pro tempore sp. nov.  and Candida ohialehuae pro tempore sp. nov., two antifungal-resistant yeasts associated with Metrosideros polymorpha flowers in Hawaii. Klaps J, de Vega C, Herrera CM, Junker RR, Lievens B, Álvarez-Pérez S (2020) PLOS ONE, 15(10):e0240093; https://doi.org/10.1371/journal.pone.0240093

[58] Ödenwinkel: An Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity. Junker RR, Hanusch M, He X, Ruiz-Herández V,  Otto J-C, Kraushaar S, Bauch K, Griessenberger F, Ohler L-M, Trutschnig W (2020) Web Ecology, 20:95-106; https://doi.org/10.5194/we-20-95-2020

[57] Deciphering the biotic and climatic factors that influence floral scents: A systematic review of floral volatile emissions. Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Penuelas J (2020) Frontiers in Plant Science, 11:1154; https://doi.org/10.3389/fpls.2020.01154

[56] Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Kuppler J, Albert CH,  Ames GM, Armbruster WS, Boenisch G, Boucher FC, Campbell DR, Carneiro LT, Chacón-Madrigal E, Enquist BJ, Fonseca CR, Gómez JM, Guisan A, Higuchi P, Karger DN, Kattge J, Kleyer M,  Kraft NJB, Larue-Kontić A-AC, Lázaro A, Lechleitner M, Loughnan D, Minden V, Niinemets Ü, Overbeck GE, Parachnowitsch AL, Perfectti F, Pillar VD, Schellenberger Costa D, Sletvold N, Stang M, Alves-dos-Santos I, Streit H, Wright J, Zych M, Junker RR (2020) Global Ecology and Biogeography, 29(6): 992-1007; https://doi.org/10.1111/geb.13077

[55] Ecology and evolution of intraspecific chemodiversity of plants. Müller C, Bräutigam A, Eilers EJ, Junker RR, Schnitzler J-P, Steppuhn A, Unsicker SB, van Dam NM, Weisser WW, Wittmann MJ (2020) Research Ideas and Outcomes, 6:e49810; https://doi.org/10.3897/rio.6.e49810

[54] Microclimatic effects on alpine plant communities and flower-visitor interactions. Ohler L-M, Lechleitner MH, Junker RR (2020) Scientific Reports, 10:1366; https://doi.org/10.1038/s41598-020-58388-7

[53] Bacteria affect plant - mite interactions via altered scent emissions. Karamanoli K, Kokalas V, Koveos DS, Junker RR, Farré-Armengol G (2020) Journal of Chemical Ecology, 46(8):782-792; https://doi.org/10.1007/s10886-020-01147-9

[52] TRY plant trait database – enhanced coverage and open access.  Kattge J, Bönisch G, Díaz S, …, Junker RR, …, et al. (2020) Global Change Biology, 26:119-188; https://doi.org/10.1111/gcb.14904

[51] A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, with impacts on florivores and floral microbiome. Boachon B, Burdloff Y, Ruan J-X, Rojo R, Vincent B, Junker RR, Bringel F, Lesot A, Henry L, Bassard J-E, Mathieu S, Allouche L, Kaplan I, Dudareva N, Vuilleumier S, Miesch L, André F, Navrot N, Chen X-Y, Werck-Reichhart D (2019) The Plant Cell, 31(12):2947–2972; https://doi.org/10.1105/tpc.19.00320

[50] Interconnectedness of the Grinnellian and Eltonian niche in regional and local plant-pollinator communities. Junker RR, Lechleitner MH, Kuppler J, Ohler L-M (2019) Frontiers in Plant Science, 10:1371; https://doi.org/10.3389/fpls.2019.01371

[49] Pollination biology reveals challenges to restoring populations of Brighamia insignis (Campanulaceae), a critically endangered plant species from Hawai‘i. Walsh SK, Pender RJ, Junker RR, Daehler CC, Morden CW, Lorence DH (2019) Flora, 259:151448; https://doi.org/10.1016/j.flora.2019.151448

[48] Natural fumigation as a mechanism for volatile transport between flower organs. Boachon B, Lynch JH, Ray S, Yuan J, Caldo KMP, Junker RR, Kessler SA, Morgan JA, Dudareva N (2019) Nature Chemical Biology, 15:583–588; https://doi.org/10.1038/s41589-019-0287-5

[47] Chemistry of floral rewards: intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, Irwin RE, Stevenson PC (2019) Ecological Monographs, 89(1):e01335; https://doi.org/10.1002/ecm.1335

[46] Spatiotemporal variation in the pollination systems of a supergeneralist plant: Is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Zych M, Junker RR, Nepi M, Stpiczyńska M, Stolarska B, Roguz K (2019) Annals of Botany, 123 (2):145-428; https://doi.org/10.1038/s41598-020-58388-7

[45] A fast and robust way to estimate overlap of d-dimensional niches, and draw inference. Parkinson JH, Kutil R, Kuppler J, Junker RR, Trutschnig W, Bathke AC (2018) International Journal of Biostatistics, 14 (2):0028; https://doi.org/10.1515/ijb-2017-0028

[44] Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to natural concentration range of floral volatile linalool. Burdon RCF, Junker RR, Scofield DG, Parachnowitsch AL (2018) Chemoecology, 28 (1):11-19; https://doi.org/10.1007/s00049-018-0252-x

[43] Elevation predicts the functional composition of alpine plant communities based on vegetative traits, but not based on floral traits. Junker RR, Larue-Kontić A-AC (2018) Alpine Botany, 128 (1):13–22; https://doi.org/10.1007/s00035-017-0198-6

[42] A biosynthetically informed distance measure to compare secondary metabolite profiles. Junker RR(2018) Chemoecology, 28:29-37; https://doi.org/10.1007/s00049-017-0250-4

[41] Epiphytic bacteria alter floral scent emissions. Helletsgruber C, Dötterl S, Ruprecht U, Junker RR (2017) Journal of Chemical Ecology, 43:1073-1077; https://doi.org/10.1007/s10886-017-0898-9

[40] Exotic flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native visitors. Kuppler J, Höfers M, Trutschnig W, Bathke AC, Eiben J, Daehler CC, Junker RR (2017) Functional Ecology, 31:2244-2254; https://doi.org/10.1111/1365-2435.12932

[39] Epiphytic bacteria on lettuce affect the feeding behavior of an invasive pest slug. Peters B, Türke M, Junker RR (2017) Acta Agrobotanica, 70:1708 (invited contribution to a special issue on plant-animal interactions); https://doi.org/10.5586/aa.1708

[38] Co-variation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. Junker RR, Kuppler J, Amo L, Blande J, Borges R, van Dam N, Dicke M, Dötterl S, Ehlers B, Etl F, Gershenzon J, Glinwood R, Gols R, Groot A, Heil M, Hoffmeister M, Holopainen J, Jarau S, John L, Kessler A, Knudsen J, Kost C, Larue-Kontic A-AC, Leonhardt S, Lucas-Barbosa D, Majetic C, Menzel F, Parachnowitsch A, Pasquet R, Poelman E, Raguso RA, Ruther J, Schiestl F, Schmitt T, Tholl D, Unsicker S, Verhulst N, Visser M, Weldegergis B, Koellner TG (2018) New Phytologist, 3:739-749; https://doi.org/10.1111/nph.14505

[37] Volatility of network indices due to undersampling of intraspecific variation in plant insect interactions. Kuppler J, Grasegger T, Peters B, Popp S, Schlager M, Junker RR (2017) Arthropod-Plant Interactions, 11:561-566; https://doi.org/10.1007/s11829-016-9493-1

[36] Bumblebees require visual pollen stimuli to initiate and multimodal stimuli to complete a full behavioral sequence in close-range flower orientation. Wilmsen S, Gottlieb R, Junker RR, Lunau K (2017) Ecology and Evolution, 7:1384-1393; https://doi.org/10.1002/ece3.2768

[35] Biological invasions and ant-flower networks on islands. Blüthgen N, Kaiser-Bunbury CN, Junker RR (2017) In: Oliveira PS, Koptur S. Ant-Plant Interactions: Impacts of Humans on Terrestrial Ecosystems. Cambridge University Press, 13:267-289 (invited contribution); https://doi.org/10.1017/9781316671825.014

[34] Herbivory-induced changes in the olfactory and visual display of flowers and extrafloral nectaries affect pollinator behavior. Hoffmeister M, Junker RR (2017) Evolutionary Ecology, 31: 269-284 (invited contribution to a special issue on plant-animal communication); https://doi.org/10.1007/s10682-016-9875-y

[33] Dynamic range boxes – A robust non-parametric approach to quantify size and overlap of n-dimensional hypervolumes. Junker RR, Kuppler J, Bathke AC, Schreyer ML, Trutschnig W (2016) Methods in Ecology and Evolution, 12:1503-1513; https://doi.org/10.1111/2041-210X.12611

[32] Inhibition of biochemical terpene pathways in Achillea millefolium flowers differently affects the behavior of bumblebees (Bombus terrestris) and flies (Lucilia sericata). Larue-Kontić A-AC, Junker RR (2016) Journal of Pollination Ecology, 18:31-35; https://doi.org/10.26786/1920-7603(2016)12

[31] Time-invariant differences between plant individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, morphology and floral scent. Kuppler J, Höfers MK, Wiesmann L, Junker RR (2016) New Phytologist, 210:1357-1368; https://doi.org/10.1111/nph.13858 

[30] Multifunctional and diverse floral scents mediate biotic interactions embedded in communities. Junker RR (2016) In: Blande JD, Glinwood RT (eds.) Deciphering chemical language of plant communication. Signaling and communication in plants. Springer Heidelberg. (invited contribution to a book on plant communication); http://doi.org/10.1007/978-3-319-33498-1_11

[29] Herbivore-induced changes in flower scent and morphology affect the structure of flower-visitor networks but not plant reproduction. Hoffmeister M, Wittköpper N, Junker RR (2016) Oikos, 125:1241-1249; https://doi.org/10.1111/oik.02988 

[28] Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Larue A-AC, Raguso RA, Junker RR (2016) Journal of Animal Ecology, 85: 396-408 [highlighted by the Journal of Animal Ecology with an In Focus article by Peter A. Hambäck]; https://doi.org/10.1111/1365-2656.12441

[27] Bees, birds and yellow flowers: Pollinator-dependent convergent evolution of UV-patterns. Papiorek S, Junker RR, Alves-dos-Santos I, Melo GAR, Amaral-Neto LP, Sazima M, Wolowski M, Freitas L, Lunau K (2016) Plant Biology, 18:46-55; http://doi.org/10.1111/plb.12322 

[26] CYP76C1-mediated linalool metabolism and formation of volatile and soluble linalool oxides in Arabidopsis flowers, a strategy for defense against floral antagonists. Boachon B, Junker RR, Miesch L, Bassard J-E, Höfer R, Caillieaudeaux, R, Seidel DE, Lesot A, Heinrich C, Ginglinger J-F, Allouche L, Vincent B, Wahyuni DSC, Paetz C, Beran F, Miesch M, Schneider B, Leiss K, Werck-Reichhart D (2015) The Plant Cell, 27:2972–2990; https://doi.org/10.1105/tpc.15.00399

[25] Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. Junker RR, Keller A (2015) FEMS Microbiology Ecology, 91:fiv097; https://doi.org/10.1093/femsec/fiv097 

[24] Working towards a holistic view on flower traits – How floral scents mediate plant-animal interactions in concert with other floral characters. Junker RR, Parachnowitsch AL (2015) Journal of the Indian Institute of Science, 95: 43-67 (invited contribution to a special issue on plant volatiles); https://www.researchgate.net/publication/271020567_Working_Towards_a_Holistic_View_on_Flower_Traits-How_Floral_Scents_Mediate_Plant-Animal_Interactions_in_Concert_with_Other_Floral_Characters

[23] Functional and phylogenetic diversity of plant communities differently affect the structure of flower-visitor interactions and reveal convergences in floral traits. Junker RR, Blüthgen N, Keller A (2015) Evolutionary Ecology, 29:437-450 (invited contribution to a special issue on exploitation barriers); https://doi.org/10.1007/s10682-014-9747-2 

[22] Prior exposure to DEET interrupts positive and negative responses to olfactory cues in Drosophila melanogaster. Junker RR, Klupsch K, Paulus J (2015) Journal of Insect Behavior, 28:1-14; https://doi.org/10.1007/s10905-014-9476-y 

[21] Gloss, colour and grip: Multifunctional epidermal cell shapes in bee- and bird-pollinated flowers. Papiorek SE, Junker RR, Lunau K (2014) PLOS ONE, 9(11):e112013; https://doi.org/10.1371/journal.pone.0112013

[20] The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Carvalheiro LG, Biesmeijer JC, Benadi G, Fruend J, Stang M, Bartomeus I, Kaiser-Bunbury C, Baude M, Gomes S, Merckx V, Baldock K, Bennett A, Boada R, Bommarco R, Cartar R, Chacoff N, Danhardt J, Dicks L, Ekroos J, Henson K, Holzschuh A, Junker RR, Lopezaraiza-Mikel M, Memmott J, Montero-Castaño A, Nelson I, Petanidou T, Power E, Rundlöf M, Smith H, Stout J, Temitope K, Tscharntke T, Tscheulin T, Vila M, Kunin WE (2014) Ecology Letters, 17:1389–1399; https://doi.org/10.1111/ele.12342 

[19] New Synthesis - A holobiontic view on plant-insect interactions. Junker RR (2014) Journal of Chemical Ecology, 40:521 (invited commentary); https://doi.org/10.1007/s10886-014-0456-7 

[18] Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Junker RR, Romeike T, Keller A, Langen D (2014) Apidologie, 45:467-477; https://doi.org/10.1007/s13592-013-0262-1 

[17] Urban biodiversity hotspots wait to get discovered: The example of the city of Ioannina, NW Greece. Kantsa A, Tscheulin T, Junker RR, Petanidou T, Kokkini S (2013) Landscape and Urban Planning, 17: 1389–1399 [highlighted by the European Commission]; https://doi.org/10.1016/j.landurbplan.2013.08.013 

[16] Volatile organic compound mediated interactions at the plant-microbe interface. Junker RR, Tholl D (2013) Journal of Chemical Ecology, 39: 810-825 (invited contribution to a special issue on Microbial Chemical Ecology); https://doi.org/10.1007/s10886-013-0325-9 

[15] Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Katzenberger TD, Lunau K, Junker RR (2013) Behavioral Ecology and Sociobiology,67:1587–1599; https://doi.org/10.1007/s00265-013-1570-1

[14] Specialisation on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Schaefer HM, Stang M (2013) Functional Ecology, 27:329-341; https://doi.org/10.1111/1365-2435.12005 

[13] Floral odour bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. Junker RR, Gershenzon J, Unsicker SB (2011) Journal of Chemical Ecology, 37:1323–1331; https://doi.org/10.1007/s10886-011-0043-0 

[12] Sampling forest canopy arthropod biodiversity with three novel minimal-cost trap designs. Bar-Ness YD, McQuillan PB, Whitman M, Junker RR, Cracknell M, Barrows A (2011) Australian Journal of Entomology, 51:12-21; https://doi.org/10.1111/j.1440-6055.2011.00836.x

[11] Composition of epiphytic bacterial communities differs on petals and leaves. Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N (2011) Plant Biology, 13:918-924; https://doi.org/10.1111/j.1438-8677.2011.00454.x 

[10] Phytochemical cues affect hunting site choices of a nursery web spider (Pisaura mirabilis) but not of a crab spider (Misumena vatia). Junker RR, Bretscher S, Dötterl S, Blüthgen N (2011) Journal of Arachnology, 39:113-117; https://doi.org/10.1636/Hi10-14.1 

[9] Ant-plant mutualism in Hawai'i? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Bleil R, Blüthgen N, Junker RR (2011) Pacific Science, 65 (3) 291-300; https://doi.org/10.2984/65.3.291 

[8] Ant-flower networks in Hawai'i: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Junker RR, Daehler CC, Dötterl S, Keller A, Blüthgen N (2011) Ecological Monographs, 81:295-311; https://doi.org/10.1890/10-1367.1 

[7] Intrafloral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Junker RR, Bleil R, Daehler C, Blüthgen N (2010) Ecological Entomology, 35:760-767; https://doi.org/10.1111/j.1365-2311.2010.01237.x 

[6] Responses to olfactory signals reflect network structure of flower-visitor interactions. Junker RR, Höcherl N & Blüthgen N (2010) Journal of Animal Ecology, 79:818-823; https://doi.org/10.1111/j.1365-2656.2010.01698.x 

[5] Floral scents repel facultative flower visitors, but attract obligate ones. Junker RR & Blüthgen N (2010) Annals of Botany, 105: 777-782 (see also: invited article addendum in Plant Signaling and Behavior); https://doi.org/10.1093/aob/mcq045 

[4] Floral scent terpenoids deter the facultative florivore Metrioptera bicolor (Ensifera, Tettigoniidae, Decticinae). Junker RR, Heidinger IMM & Blüthgen N (2010) Journal of Orthoptera Research, 19:69-74; https://doi.org/10.1665/034.019.0111 

[3] Feeding preferences of phasmids in a Bornean dipterocarp forest. Junker RR, Itioka T, Bragg PE & Blüthgen N (2008) Raffles Bulletin of Zoology, 56:445-452; https://lkcnhm.nus.edu.sg/wp-content/uploads/sites/10/app/uploads/2017/06/56rbz445-452.pdf

[2] Floral scents repel potentially nectar-thieving ants. Junker RR & Blüthgen N (2008) Evolutionary Ecology Research, 10:295-308; https://www.evolutionary-ecology.com/issues/v10n02/llar2248.pdf

[1] Interaction between flowers, ants and pollinators: additional evidence for floral repellence against ants. Junker R, Chung AYC & Blüthgen N (2007) Ecological Research, 22:665-670; https://doi.org/10.1007/s11284-006-0306-3

Stand 15.04.2024