Direkt zum Inhalt
Bannergrafik Mikrobiologie
Sie sind hier:» Universität » Biologie » Fachgebiete » Mikrobiologie » E. Bremer
  • Print this page
  • create PDF file

Laboratory for Molecular Microbiology

Erhard Bremer
Foto: Nadja Pohle, Conventus
Nelli Melcher
SFB 987

Graduate School SFB



 Prof. Dr. Erhard Bremer
 Laboratorium für Mikrobiologie, Fachbereich Biologie
 Philipps-Universität Marburg, Karl-von-Frisch Str. 8
 D-35043 Marburg/Germany

 Phone: +49-6421-28 21529, Fax: +49-6421-28 28979 

Nelli Pfeifer

Laboratorium für Mikrobiologie,                    
Fachbereich Biologie
Philipps-Universität Marburg,
Karl-von-Frisch-Str. 8
D-35043 Marburg/Germany

Phone: +49-6421-28 21530,
Fax: +49-6421-28 28979         

Google Scholar

Erhard’s Papers and Citations (here)


Ect Dimer

Picture provided by Dr. T. Hoffmann
Picture provided by Dr. T. Hoffmann

Picture provided by:
Dr. Astrid Höppner & Dr. Sander Smits,
Heinrich-Heine-Unitersität Düsseldorf
bremer fig 1.jpg





 Klicken Sie hier, um die
PDF Datei anzusehen.
Forschen in MR
Datei anzusehen.          
     VAAM 25

proLOEWE Bild



Erhard Bremer

(20. 02. 1954)

  • Diplom (Biology), University of Tübingen (1980)
  • Dr. rer. nat. (Biology), University of Tübingen (1982)
  • Postdoctoral fellow, National Cancer Institute (NCI), Frederick, Maryland, U.S.A. (1982-1984)
  • Staff scientist (C1), Department of Microbiology, University of Konstanz (1984-1990)
  • Habilitation (Microbiology and Genetics), University of Konstanz (1989)
  • Assistant Professor (C2; Microbiology), University of Konstanz (1990-1992)
  • Offer for an associated professorship (C3) for Applied Microbiology at the University of Saarbrücken (1992; declined)
  • Head (C3) of the group "Osmoregulation" at the Max Planck Institute for terrestrial Microbiology, Marburg (1992-1995)
  • Adjunct Professor (Microbiology) at the Dept. of Biology, University of Marburg (1993-1995)
  • Full professor of Microbiology and Head of the Laboratory for Molecular Microbiology at the Dept. of Biology, University of Marburg (1995-current)
  • Speaker of the Collaborative Research Center for "Soil Microbiology" (SFB 395) (2000-2007)
  • Offer for a full professorship (C4) for Microbiology at the Ludwig-Maximilians-University, Munich (2002; declined)
  • Vice-Dean of the Department of Biology, University of Marburg (10/2009 - 03/2011)
  • Elected as member of the "European Academy of Microbiology" (EAM) (2011)
  • Vice-Speaker of the Collaborative Research Center for "Microbial Diversity in Environmental Signal Response" (SFB 987) (06/2012 - 02/2015)
  • Visiting Fellow; Princeton University, Department of Molecular Biology, USA, (05 - 10/2013)
  • Speaker of the Collaborative Research Center for "Microbial Diversity in Environmental Signal Response" (SFB 987) (02/2015 - current)
  • Elected as fellow in the American Academy of Microbiology (AAM) (2015)


Bacillus subtilis (picture kindly provided by L. Czech)


Biofilms of Bacillus subtilis (picture kindly provided by Dr. T. Hoffmann)




Nach 18 Jahren im VAAM-Redaktionsteam gibt Herr Bremer sein Amt weiter.

In der Februar Ausgabe des BIOspektrums ist dazu ein sehr netter Artikel erschienen.

Hier können Sie ihn lesen.

Verabschiedung Bremer VAAM














Artikel erschien in der 3. BIOspektrum Ausgabe im Mai 2019



Bremer E Professor E

Ein deutscher Professor in seinem natürlichen Habitat...

Ein Professor erklärt die Welt ...

Logo EAM

Erhard Bremer is a founding member of the European Academy of Microbiology.
To learn more about the EAM you can visit their new Wikipedia entry.

Erhard Bremer ist Fellow der American Academy of Microbiology. Mit diesem Fellowship zeichnet die American Society for Microbiology  (ASM) Wissenschaftler für herausragende Beiträge auf dem Gebiet der Mikrobiologie aus. 

Tagungsband VAAM Marburg

Die Jahrestagung 2015 der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) hat mit über 1.200 TeilnehmerInnen vom

1. bis 4. März 2015 in Marburg stattgefunden.

Tagungspräsident: Prof. Dr. Erhard Bremer

Weitere Informationen aus Pressetexten und anderen Quellen finden Sie hier:





Den kompletten Tagungsband können Sie  hier herunterladen.

  The Osmo-Crew

Gruppenbild 2017
Gruppenbild 2019


Kathleen E. Fischer, 30.11.2012
A Zaza Hut
Adrienne Zaprasis, 04.04.2013
 Hut S. Broy
Sebastian Broy, 21.05.2015 
Stefanie Ronzheimer
Stefanie Ronzheimer, 22.12.2015
 Hut S. Löbach
Stephanie Löbach, 04.03.2016
Katja Nagler
Katja Nagler, 08.06.2016
Annina Schulz
Annina Schulz, 22.07.2016
 Daniela Stecker, 11.10.2016
Daniela Stecker, 11.10.2016


Hut L.Teichman. jpg
Laura Teichmann, 27.09.2018


Bianca Warmbold, 07.06.2019

Laura Czech, 18.11.2019

focus bre research.jpg



A key event in the evolution of primordial cells on earth was the development of the cytoplasmic membrane since it created a protected reaction chamber for the performance of life’s vital attributes (faithful copying of the genetic material and cell division, development of an ordered metabolism, generation of energy producing systems to fuel import and export transport processes). However, the invention of the semi-permeable cytoplasmic membrane and the subsequent development of a protective cell wall (e.g., the peptidoglycan sacculus) also created a severe problem for the microbial cells because this protected environment with its high concentrations of nucleic acids, proteins, organic metabolites and inorganic ions possesses a very substantial osmotic potential. This, in turn, creates an osmotic driving force that triggers water influx into the cell and thereby generates an intracellular hydrostatic pressure, the turgor, whose magnitude can in certain groups of microorganisms (e.g. Bacilli and Staphylococci) vastly exceed that present in a car tire. Turgor is considered essential for cell expansion and viability, but its magnitude is affected by fluctuations in the osmotic conditions of the varied habitats of microorganism.

Fig. 1. From a proto-cell to modern-day microbial cells: water-management and control of turgor is critical for cellular survival.

B. Subtilis


Microorganisms never developed the ability to actively pump water in or out of the cell to compensate for water fluxes across their cytoplasmic membrane that are elicited by variations in the external osmolarity. Instead, microorganisms learned in the course of evolution to determine the extent of cellular hydration and magnitude of turgor indirectly by dynamically modulating the osmotic potential of their cytoplasm in a direct response to cues emanating from osmotic changes in the environment. When they face hyperosmotic environments, they expel ions and organic compounds through the transient opening of mechanosensitive channels to prevent cell rupture. When they face hyperosmotic growth conditions they escape cellular dehydration and collapse of turgor by amassing ions (e.g., potassium) and a selected class of organic osmolytes, the so-called compatible solutes. Compatible solutes can be amassed by the microbial cells either through synthesis or through uptake in a direct response to increases in the osmolarity of their habitat.

Fig 2. Raster electron micrograph of the soil bacterium Bacillus subtilis (picture kindly provided by Laura Czech and Dr. Karl-Heinz Rexer, Philipps Universität Marburg)


We are studying the genetic regulatory circuits that permit microbial cells to detect osmotic changes in their environment and study the cellular response systems that allow cells challenged by high salinity to cope with osmotic stress. We use the Gram-positive soil bacterium Bacillus subtilis and various taxonomically closely related Bacillus species as our primary model system. Important compatible solutes for Bacilli are the amino acid L-proline, the trimethylammonium compound glycine betaine and the tetrahydropyrimidine ectoine and its derivative hydroxyectoine. These compounds can either be synthesized in response to osmotic stress or can be taken up from the environment through osmotically controlled high-affinity uptake systems. Exposure of B. subtilis to high salinity (equivalent to dried-out soil) triggers rapid water efflux that is counteracted by the cell through increased uptake of potassium ions and the subsequent synthesis and import of compatible solutes (e.g., L-proline and glycine betaine). Compatible solute accumulation allows potassium efflux through dedicated extrusion systems and thereby permits the cell to reduce the ion strength of the cytoplasm without compromising its osmotic potential and ability to maintain physiological adequate levels of turgor. An important aspect of our work on the use of compatible solutes by B. subtilis as osmo-stress and temperature stress protectants is the analysis of osmotically controlled transport systems for the import of this class of compounds.We study the genetic regulation of the structural genes for these import systems in response to increased salinity (“osmoregulation”) and characterize structurally and biochemically components - primarily the extracellular ligand binding proteins - of ABC-transporters for various types of compatible solutes.

Fig. 3.   Central osmo-stress response systems for the water-management by the soil Bacillus subtilis facing a high salinity environment.



The soil bacterium Bacillus subtilis synthesizes the compatible solute glycine betaine through the oxidation of the precursor molecule choline. It imports for this purpose choline with high affinity through the osmotically inducible ABC transporter OpuB. Left: A view from the crystallization screen with the purified OpuBC protein (picture kindly provided by Dr. Sander H.J. Smith; University of Düsseldorf, Germany). Right: Overall crystal structure of the OpuBC protein in complex with its ligand choline (PDB code: 3R6U). The OpuBC crystal structure and the molecular determinants of the choline-binding site were report by Pittelkow et al. (J. Mol. Biol. 411:53-67, 2011).

Fig. 4. Structural analysis of the choline-binding protein OpuBC required for the functioning of the choline-specific OpuB ABC-transporter from Bacillus subtilis.
Our laboratory actively participates within the framework of the LOEWE initiative of the state of Hessen in the Centre for Synthetic Microbiology (SYMIKRO) (link). Building on our extensive expertise in field of microbial stress resistance against extremes in osmolarity and growth temperature through uptake and synthesis of compatible solutes, we design portable genetic systems for transport and uptake systems for these compounds whose expression can be triggered at will.  We assemble also genetic building blocks (“bio-bricks”) for the synthesis of L-proline and ectoine/hydroxyectoine from various microorganisms and synthetic gene constructs to streamline and maximize the high-level cellular production of these compounds for biotechnological purposes. Compatible solutes, also referred to in the literature as “chemical chaperones”, not only confer superior cellular resistance to osmotic stress but are also very efficient protectants against extremes in growth temperature; both low and high! Their ecophysiological relevance in natural settings can therefore not be underestimated for providing stress resistance to microbial cells!


Weitere Nachrichten haben wir hier im Archiv eingestellt.    


Recent Publications

 The BCCT family of carriers

Ziegler C,  Bremer E,  Krämer R.
The BCCT family of carriers:
from physiology to crystal structure

Mol Microbiol. 78: 13-34 (2010)    

Hoffmann, T., von Blohn, C., Stanek, A.,Moses, S., Barzantny, H. and Bremer, E.
Synthesis, release, and recapture of the compatible solute proline by osmotically
stressed Bacillus subtilis cells
Appl. Environ. Microbiol. 78: 5753-5762 (2012)
Cover image: aem.asm.org



Fischer, K. E. & Bremer, E.
Activity of the Osmotically Regulated yqiHIK Promotor
from Bacillus subtilis is Controlled at a Distance

J. Bacteriol. 194: 5197-5208 (2012)
Cover image: jb.asm.org
     golden eye

Zaprasis, A., Hoffmann, T., Stannek, L., Gunka, K.,
Commichau, F. M.  and Bremer, E.
The γ-Aminobutyrate Permease GabP Serves as the Third
Proline Transporter of Bacillus subtilis

J. Bacteriol. 196: 515-526 (2014)

Cover image: jb.asm.org



Hoffmann T. & Bremer E.   
Guardians in a stressful world: Opu family of compatible solute transporters from Bacillus subtilis.

Biol Chem. 398: 193-124 (2017)
Cover image: www.degruyter.com/view/j/bchm 






  • Bremer, E. (2014) Liberate and grab it, ingest and digest it: the GbdR regulon of the pathogen Pseudomonas aeruginosa. J. Bacteriol. 196: 3-6.













  • Czech L., Stöveken N., Bremer E. (2016) EctD‑mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel‑independent excretion. Microb. Cell. Fact. 15(1):126 




  •  Hoffmann T., Bremer E. (2017) Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem. 398: 193-214.









  • Czech L., Bremer E. (2018) With a pinch of extra salt - did predatory protists steal genes from their food? PLoS Biol 16: e2005163

  • Richter A. A., Kobus S., Czech L., Hoeppner A., Zarzycki J., Erb T.J., Lauterbach L., Dickschat J.S., Bremer E., Smits S.H.J. (2020) The architecture of the diaminobutyrate acetyltransferase active site provides mechanistic insight into the biosynthesis of the chemical chaperone ectoine. J Biol Chem. (in press)

  • Czech L., Hoeppner A., Smits H.J., Bremer E. (2020) Ectoine synthase: an iron-dependent member of the cupin superfamily. In: A. Messerschmidt (Ed) Encyclopedia of Inorganic and Bioinorganic Chemistry (e Edition)




Milli 22.05.19


Zuletzt aktualisiert: 18.02.2020 · Kristin Kuche

Fb. 17 - Biologie

Fb. 17 - Biologie, Karl-von-Frisch-Straße 8, D-35043 Marburg
Tel. +49 6421/28-23499, Fax +49 6421/28-22052, E-Mail: Fb-17Biologie@uni-marburg.de

URL dieser Seite: https://www.uni-marburg.de/fb17/fachgebiete/mikrobio/molmibi

Impressum | Datenschutz