
Translating Essential OCL Invariants to Nested
Graph Constraints Focusing on Set Operations:

Long Version?

Hendrik Radke1, Thorsten Arendt2, Jan Steffen Becker1,
Annegret Habel1, and Gabriele Taentzer2

1 Universität Oldenburg,
{radke,jan.steffen.becker,habel}@informatik.uni-oldenburg.de

2 Philipps-Universität Marburg,
{arendt,taentzer}@informatik.uni-marburg.de

Abstract. Domain-specific modeling languages (DSMLs) are usually
defined by meta-modeling where invariants are defined in the Object
Constraint Language (OCL). This approach is purely declarative in the
sense that instance construction is not incorporated but has to added.
In contrast, graph grammars incorporate the stepwise construction of
instances by applying transformation rules. Establishing a formal re-
lation between meta-modeling and graph transformation opens up the
possibility to integrate techniques of both fields. This integration can
be advantageously used for optimizing DSML definition. Generally, a
meta-model is translated to a type graph with a set of nested graph
constraints. In this paper, we consider the translation of Essential OCL
invariants to nested graph constraints. Building up on a translation of
Core OCL invariants, we focus here on the translation of set operations.
The main idea is to use the characteristic function of sets to translate set
operations to corresponding Boolean operations. We show that a model
satisfies an Essential OCL invariant iff its corresponding instance graph
satisfies the corresponding nested graph constraint.

Keywords: Meta modeling, Essential OCL, graph constraints, set operations

1 Introduction

Model-based software development causes the need for new, often domain-specific
modeling languages (DSMLs) to carry high-level knowledge about the software.
Nowadays, DSMLs are typically defined by meta-models following purely the
declarative approach. In this approach, language properties are specified by the

? This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-1 and TA 2941/3-1 (Meta modeling and graph grammars: integration of
two paradigms for the definition of visual modeling languages).

Object Constraint Language (OCL) [1]. Constructive aspects, however, such as
generating instances [2,3] for, e.g., testing of model transformations, and recog-
nizing applied edit operations [4] are useful as well to obtain a comprehensive
language definition. A constructive way to specify languages, especially textual
ones, are grammars. Graph grammars have shown to be suitable and natural to
specify (domain-specific) visual languages in a constructive way [5]. They can
be used for instance generation, for example.

DSML definition should come along with supporting tools such as model editors
and model version management tools. The use of graph grammars for language
definition has lead to the idea of generating edit operations from meta-models. In
[4], model change recognition as well as model patching are lifted to recognizing
and packaging edit operations to patches. To adapt such a general approach to
domain-specific needs, complete sets of edit operations have to be specified being
able to build up and destroy all models of a DSML. The automatic generation
of edit operations from a given meta-model would be of great help.

Given a meta-model, instance generation has been considered by several ap-
proaches in the literature. Most of them are logic-oriented as, e.g., [2,6]. They
translate class models with OCL constraints into logical facts and formulas. Logic
approaches such as Alloy [7] can be used for instance generation, as done, e.g.,
in [6]: After translating a class diagram to Alloy, an instance can be generated or
it can be shown that no instances exist. This generation relies on the use of SAT
solvers and can also enumerate all possible instances. All these approaches have
in common that they translate class models with OCL constraints into logical
facts and formulas forgetting about the graph properties of class models and
their instances.

In contrast, graph-based approaches translate OCL constraints to graph pat-
terns or graph constraints. Following this line, models and meta-models (without
OCL constraints) are translated to instance and type graphs. I.e., graph-based
approaches keep the graph structure of models as units of abstraction, hence,
graph axioms are satisfied by default. In [8], we started to formally translate
OCL constraints to nested graph constraints [9]. In this paper, we continue this
translation and focus on set operations such as select, collect, union and
size. Resulting graph constraints can be further translated to application con-
ditions of transformation rules [9]. Especially this work can be advantageously
used to translate meta-models (with OCL constraints) to edit operations with all
necessary pre-conditions. Meanwhile, Bergmann [10] has implemented a trans-
lator of OCL constraints to graph patterns. The focus of that work, however, is
not a formal translation but an efficient implementation of constraint checking.

Since graph-based approaches rely on (type and object) graphs, they support
flat object sets as the only form of OCL collections to be translated to. In
language definition, however, often neither a specific order nor the number of
duplicate values is crucial, but the collection of distinct values (see also [6]).
Moreover, OCL translation is restricted to a simpler form of meta-model spec-
ified by EMOF [11], hence OCL considerations are restricted to Essential OCL

2

being closer to supporting technologies such as the Eclipse Modeling Framework.
Furthermore, considerations are restricted to a first-order, two-valued logic, as
done for graph constraints, i.e., the translation is straitened to the correspond-
ing OCL features. However, existing meta-model specifications have shown that
this sub-language covers the substantial part to specify well-formedness rules in
OCL that are first-order. Since the focus of OCL usage is DSML definition, we
further restrict our translation to OCL invariants.

The contributions of this paper are the following:

(1) We continue the translation of OCL started in [8] and focus on set opera-
tions such as select, collect, union and size. The main idea for translating
constraints with set operations is to use the characteristic function of sets which
assigns each set operation its corresponding Boolean operation.

(2) We introduce a compact notion of graph conditions, so-called lax conditions.
They permit the translation of a substantial part of Essential OCL invariants to
graph constraints of comparable complexity. Hence, they present a new graph-
ical representation of OCL invariants being slightly more abstract since several
navigation paths can be combined in graphs and set operations are reduced to
Boolean operations. Lax conditions are extensively used in the OCL translation.

(3) The translation of Essential OCL invariants to nested graph constraints is
shown to be correct, i.e., a model satisfies an Essential OCL invariant iff its cor-
responding instance graph satisfies the corresponding nested graph constraint.
The aim of this work is to establish a formal relation between meta-modeling
and the theory of graph transformation. New contributions in modeling lan-
guage engineering may be expected by advantageously combining concepts and
techniques from both fields.

This paper is structured as follows: The next section presents Essential OCL
focusing on set operations. Section 3 recalls typed attributed graphs and graph
morphisms as well as nested graph conditions. It also introduces lax conditions
as compact notion of graph conditions. Section 4 presents our main contribution
of this paper, the translation of Essential OCL invariants to nested graph con-
straints, more precisely to lax conditions. The translation of graph constraints
to application conditions of rules is sketched in Section 5. Section 6 compares to
related work and Section 7 concludes the paper.

2 Essential OCL Invariants

In this section, we recall Essential OCL presenting a small example first and
formally defining the syntax and semantics thereafter, according to the work by
Richters [12] that went into the OCL specification by the OMG [1].

2.1 An example meta-model including OCL invariants

For illustration purposes, we use the following meta-model for Petri nets.

3

Example 1. A Petri net (PetriNet) is composed of several places (Place) and
transitions (Transition). Arcs between places and transitions are explicit. PTArc
and TPArc are respectively representing place-to-transition arcs and transition-
to-place ones. An arc is annotated with a weight. A place can have an arbitrary
number of incoming (preArc) and outgoing (postArc) arcs. In order to model
dynamic aspects, places need to be marked with tokens (Token).

Fig. 1. Meta-model for Petri nets (adapted from [13])

Despite of multiplicities, this meta-model allows to build inappropriate instances,
e.g., one can model a Petri net without any tokens. Therefore, the meta-model
has to be complemented with invariants formulated in OCL, e.g.:

1. The name of a transition is not empty.
context Transition inv: self.name <> ’’

2. There is no isolated transition.
context Transition inv: self.preArc -> notEmpty() or

self.postArc -> notEmpty() or alternatively
context PetriNet inv: self.transition -> forAll(t:Transition |

t.preArc -> notEmpty() or t.postArc -> notEmpty())

3. There is no isolated place.

(a) context Place inv: self.preArc -> notEmpty() or self.postArc

-> notEmpty() or alternatively

(b) context Place inv: PTArc.allInstances() -> collect(src) ->

union(TPArc.allInstances() -> collect(dst)) -> includes(self)

4. Each two places of a Petri net have different names.

(a) context PetriNet inv: self.place -> forAll(p1:Place | self.place

-> forAll(p2:Place | p1 <> p2 implies p1.name <> p2.name))

or alternatively

4

(b) context PetriNet inv: self.place -> forAll(p1:Place,p2:Place

| p1 <> p2 implies p1.name <> p2.name)

5. There is at least one place in a Petri net having at least one token.

(a) context PetriNet inv: self.place -> exists(p:Place | p.token

-> notEmpty()) or alternatively

(b) context PetriNet inv: self.place -> select(p:Place | p.token

-> notEmpty()) -> notEmpty() or alternatively

(c) context PetriNet inv: self.place -> collect(p:Place | p.token)

-> notEmpty() or alternatively

(d) context PetriNet inv: Token.allInstances() -> notEmpty() 3

6. The weight of an arc is positive.
context Arc inv: self.weight >= 1

7. There is at least one transition that can be fired, i.e., all PTArcs targeting
this transition must have a weight less or equal to the token number of their
source places.
context PetriNet inv: self.transition -> exists(t:Transition |

t.preArc -> forAll(a:PTArc | a.weight <= (a.src.token -> size())))

In the following, we list further OCL invariants which conform to the Petri net
meta-model in Figure 1. Please note, that these invariants may be not appropri-
ate to model proper Petri nets. Instead, we use them to demonstrate additional
translations of invariants to nested graph constraints compared to those pre-
sented in the preceding paper [8].

8. Each Petri net has at least two places.
context Petrinet inv: self.place->size() >= 2

9. Each place is both source and destination of corresponding place-to-transition
respectively transition-to-place arcs.
context PetriNet inv:

(self.place = (PTArc.allInstances() -> collect(src))) and

(self.place = (TPArc.allInstances() -> collect(dst)))

2.2 OCL language description

In the following, we give a more detailed but rather informal description of the
OCL language. After summarizing the OCL type system, we discuss issues with
respect to navigating OCL expressions and dealing with the three-valued logic
in OCL. Finally, we present selected operations on the OCL collection types.

3 We assume, that a Petri net model consists of only one single instance of type
PetriNet representing the root element of the model with respect to the containment
hierarchy.

5

The OCL type system The type system in OCL mainly consists of three cat-
egories: custom types, predefined types, and template types. Custom types are
either class types or enumeration types defined by the user in the corresponding
meta-model. For example, the Petri net meta-model shown in Figure 1 defines
the custom class types PetriNet, Transition, Place, Token, PTArc, TPArc,
and Arc 4. For all custom types, OCL provides basic operations like equality
(=) and inequality (<>) as used in invariant 1 of Example 1 (self.name <>

’’). Predefined types are Integer, Real, String, and Boolean, called primitive
data types. They are used as attribute types in meta-models, as for example
in attribute Arc::weight::Integer (see Figure 1) 5. Again, basic operations
depending on the concrete type are provided. For instance, the invariants of Ex-
ample 1 use (in)equality operators on String (self.name <> ’’ in invariant 1),
logical operations on Boolean (logical or in invariant 2), and relational opera-
tors on Integer (self.weight >= 1 in invariant 6). Furthermore, OCL has two
special predefined types representing the top (OclAny) and bottom (OclVoid) el-
ements of the corresponding type hierarchy. Template types are Collection(T)

and Tuple(T1,T2) whose parameters T, T1, and T2 are applied to other types.
Please note, that collection is an abstract type. Its concrete subtypes are Set,
OrderedSet, Bag, and Sequence and differ with respect to frequency and order-
ing of the contained elements. In this paper, we concentrate on sets and bags
only since we consider graph structures which, in the basic sense, do not include
ordering features.

Navigating OCL expressions In OCL expressions, object structures can be
traversed using the so-called dot notation. Accessible elements are objects (i.e.,
class instances) and their features (i.e., attributes respectively opposite associ-
ation ends). Depending on the feature’s multiplicity (for example, 1 and 0..1

on the one hand, 1..* and 0..* on the other hand), a navigation results either
in a single-valued return type (i.e., custom or predefined type) or in a multi-
valued type, more precisely in a set. In invariant 1 of Example 1, e.g., navigation
self.name 6 results in a single value of predefined type String whereas in invari-
ant 3 (a) navigation self.preArc 7 yields a set of type PTArc. If in a given Petri
net no such incoming arc exists, the navigation from the corresponding transi-
tion results in an empty set whereas, in the case of multiplicity 0..1, the absence
of an appropriate value yields null representing the only value of bottom type
OclVoid. Further navigation from a multi-valued result using a second dot yields
a bag-valued result. For example, navigating somePetriNet.arc.weight would
return a bag since different arcs could have the same weight which consequently
has to be returned multiple times. Please note, that this kind of navigation is
only a shorthand for the collect operation described later on in this section.

4 Please note, that class Arc is abstract as can be seen by its name written in italics.
As a consequence, it is impossible to model instance elements having Arc as type.

5 The meta-model in Figure 1 uses the EMF representation EInt of type Integer.
6 In this invariant, variable self represents an instance of type Transition.
7 Again, variable self represents an instance of type Transition.

6

Logic in OCL We mentioned above that (1) OclVoid is a subtype of any custom
and predefined type, i.e., it is also a subtype of the predefined type Boolean, and
that (2) OclVoid consists of value null. As a consequence, OCL type Boolean

comes along with a three-valued logic, i.e., Boolean={true,false,null}. The
following operations are provided: and, or, not, xor, and implies. Among oth-
ers, we use the logical or in invariant 2 and the implication in invariant 4 of
Example 1. Moreover, OCL has a universal quantifier forAll and an existen-
tial quantifier exists, both in the spirit of first order logic. Consequently, both
quantifiers range over finite collections only and cannot be used, for example,
on all instances of the type Integer or String [14]. Invariant 4 uses the uni-
versal quantifier to express that for each pair of places within the Petri net the
corresponding names are distinct: forAll(p1,p2:Place | p1 <> p2 implies

p1.name <> p2.name). The existential quantifier is used in invariants 5 (a)
and 7, for example.

OCL collection type operations In this section, we give a rough overview
on some selected but substantial predefined collection type operations which are
called by the arrow-notation (for example, someSet->foo()). They can be cate-
gorized into construction, conversion, filter, extraction, and Boolean operations.
Construction operations are either explicit type constructors like Set{...} and
Bag{...} or one of the implicit constructors including(e) and excluding(e).
An implicit constructor takes an element e as parameter and adds it to a given
collection (including) respectively removes all occurrences of it from a given
collection (excluding). Conversion operations like asSet() and asBag() allow
to convert one collection kind into any of the other three collection kinds. Fil-
ter operations like select(BExp), reject(BExp), and any(BExp) are used to
filter collection elements according to the evaluation of the Boolean expression
BExp inside the brackets. For example, somePetriNet.arc->select(weight=1)
filters all those arcs from the arc set of a given Petri net carrying the standard
weight 1 whereas somePetriNet.arc->any(weight=1) non-deterministically re-
turns one such arc. We use the selection operation in invariant 5 (b) of Exam-
ple 1. Extraction operations extract some information from the given collec-
tion except for Boolean values. Examples of this kind of operations are size(),
collect(BExp), and union(Collection(T)). size() returns the number of
elements within the collection. collect(...) can be used to construct new
collections (with potentially other type elements) from existing ones. For exam-
ple, somePetriNet.arc->collect(weight) returns a bag (!) of Integer val-
ues. The operations collect and size are used in invariants 5 (c) and 7,
respectively. Finally, there are many operations returning Boolean values. For
checking the existence of elements within a collection, operations isEmpty() re-
spectively notEmpty() can be used. We use the latter one in invariant 3 (a) of
Example 1, for example. In order to test membership in collections the oper-
ations includes(e) and excludes(e) testing on single elements e as well as
includesAll(Collection(T)) and excludesAll(Collection(T)) for testing
element collections are available.

7

2.3 Essential OCL

The Object Constraint Language (OCL) [1] is a formal language used to de-
scribe expressions on object-oriented models being consistent to either the Meta
Object Facility (MOF) [11] or the Unified Modeling Language (UML) specifica-
tions of the OMG. These expressions typically specify invariant conditions that
must hold for the system being modeled (see Example 1) or queries over objects
described in a model. Whereas our preceding work [8] concentrates on a re-
stricted version of OCL, called Core OCL, that addresses the OCL type system,
navigation concepts, and the usage of invariants, we now widen our approach
to Essential OCL. According to [1], Essential OCL is “. . . the minimal OCL re-
quired to work with EMOF”. Essential MOF (EMOF) is a subset of MOF that
allows to define simple meta-models using simple concepts. Considering EMOF
as underlying structure means that the type system we address in this paper en-
hances the one in the preceding paper [8] by also considering enumeration types
and allowing arbitrary multiplicities on association ends, i.e., multiplicities range
between lower and upper bounds. As a consequence, this leads to single objects
instead of sets of objects for upper bound 1 multiplicities (0..1 and 1..1, re-
spectively) which is now also considered in the translation to graph constraints.
However, we differ from the EMOF type system in two minor issues. On the one
hand, we do not consider class operations since our aim is to translate invariants
only 8. On the other hand, for simplicity reasons it is still appropriate that roles
are the default ones indicating source and target.

The translation presented in this paper covers a substantial part the OCL speci-
fication. Compared to [8], we now support a significant number of set operations
(e.g., select, collect, includesAll, and union). In contrast to the OCL speci-
fication, we use a two-valued logic. Furthermore, and the only kind of collections
we consider are sets which seem to conform well with using OCL for meta-
modeling (i.e., we do not consider bags, sequences, ordered sets, and tuples).

Abstract syntax Figure 2 shows the substantial part of the Essential OCL
meta-model we consider in this paper. The meta-classes are embedded in the
corresponding EMOF meta-model whose meta-classes have a gray-colored back-
ground. As illustrated in the left part of Figure 2, the EMOF type system
is extended by the special type AnyType and by the specific collection type
SetType. An invariant (respectively Constraint) on a Classifier is defined
by an ExpressionInOCL that owns a contextual Variable which is named self
in most cases. Since OCL is a strongly typed language 9, the context variable
is typed by the constrained element of the invariant whereas the invariant itself
has type Boolean which is a concrete implementation of PrimitiveType. The
concrete specification of an invariant is given by a subclass of OclExpression.
In general, such a subclass is either

8 We do not consider pre-/postconditions of class operations, for example.
9 Indeed, all meta-classes are direct or indirect sub classes of TypedElement (see right

part of Figure 2).

8

Fig. 2. The considered part of the Essential OCL meta-model

9

– a VariableExpression to refer to a variable,
– a PrimitiveLiteralExp to refer to a primitive type literal, e.g., String foo,
– an OperationCallExp to refer to an operation of a primitive type like the

addition of integers, or to a set type operation like isEmpty,
– a PropertyCallExp to enable navigation to class attributes (typed by a

primitive type or an enumeration) or to association ends (typed by a class),
both represented as instances of meta-type Property,

– a SetLiteralExp to refer to a set of model elements which are represented
by meta-type SetItem,

– an EnumLiteralExp to refer to an enumeration literal,
– a TypeExp to provide type checking and type casting,
– an IfExpression to provide conditional expressions, or finally
– an IteratorExp representing a looping execution on each element of a given

set (used in exists and forAll).

Semantics We describe the semantics of Essential OCL based on the formal
definitions included in the OCL specification [1], Annex A being based on the
doctoral thesis by Richters [12]. We prefer this formalization, in contrast to the
UML-based specification in the main part, since it is more suitable for proving
the semantic preservation of our translation later on in this paper. Due to space
limitations, we recall the main definitions and concepts only. For deeper con-
siderations, we refer to the documents mentioned above. As a first preliminary
step, we define an object model representing the EMOF-based meta-model types
as follows.

Definition 1 (Object Model). Let DSIG = (S,OP) be a data signature
with S = {Integer,Real, Boolean, String} and corresponding operation sym-
bolsOP . An object model overDSIG is a structureM = (CLASS,ENUM,ATT,
ASSOC, associates, rsrc, rtgt,multiplicities,≺) where

– CLASS is a finite set of classes,
– ENUM is a finite set of enumerations where each enumeration E ∈ ENUM

is associated with a non-empty but finite set of enumeration literals by func-
tion literals(E) = {eE1 , . . . , eEn },

– ATT = {ATTc}c∈CLASS is a family of attributes att : c→ (S ∪ENUM) of
class c,

– ASSOC is a set of associations,
– associates : ASSOC → (CLASS × CLASS) is a function that maps each

association to a pair of participating classes,
– rsrc, rtgt : ASSOC → String are functions that map each association to a

source respectively target role name with rsrc(assoc) = c1 and rtgt(assoc) =
c2 for each assoc ∈ ASSOC with associates(assoc) = (c1, c2),

– multiplicities : ASSOC → (P(N0) × P(N0)) 10 is a function assigning
each association end a multiplicity specification with multiplicities(assoc) =

10 P(N0) denotes the power set of the natural numbers. However, we consider intervals
with lower and upper bound only.

10

(M1,M2), M1 6= {0} 11, and M2 6= {0} for each assoc ∈ ASSOC with
associates(assoc) = (c1, c2),

– and ≺ is a partial order on CLASS reflecting its generalization hierarchy.

Since the evaluation of an OCL invariant requires knowledge about the complete
context of an object model at a discrete point in time, we recall the definition of
a system state of an object model M . Informally, a system state consists of a set
of class objects, functions assigning attribute values to each class object for each
attribute, and a finite set of links connecting class objects within the model.

Definition 2 (System State). A system state of an object model M is a
structure σ(M) = (σCLASS , σATT , σASSOC) where

– for each class c ∈ CLASS, σCLASS(c) is a finite subset of the (infinite) set
of object identifiers oid(c) = {c1, c2, . . . },

– for each attribute att : c → t ∈ ATT≺c , σATT (att) : σCLASS(c) → I(t) is an
operation from class objects to some interpretation of type t ∈ (S∪ENUM)
where ATT≺c :=

⋃
c≺c′ ATTc′ represents the set of all owned and inherited

attribute symbols of a class c,
– for each association assoc ∈ ASSOC with associates(assoc) = (c1, c2),
σASSOC(assoc) ⊂ σ≺CLASS(c1)× σ≺CLASS(c2) is a finite set of links connect-
ing objects where σ≺CLASS(c) :=

⋃
c′≺c σCLASS(c′) is the set of all objects

with type or super type c. Furthermore, σASSOC(assoc) must meet both
multiplicity specifications for assoc:
∀i, j ∈ {1, 2}, i 6= j, ∀l = (o1, o2) ∈ σASSOC(assoc) :
|{l′ = (o′1, o

′
2)|l′ ∈ σASSOC(assoc) ∧ oi = o′i}| ∈Mj

with multiplicities(assoc) = (M1,M2).

The set States(M) consists of all system states σ(M) of M .

Based on the formal definition of an object model, the underlying type system
(signature) for expressions in Essential OCL is defined as follows:

Definition 3 (Signature). A signature over an object model M is a structure
ΣM = (TM ,≤M , ΩM) where

– TM is a set of types consisting of
• all basic types (S in DSIG),
• all object types (for each c ∈ CLASS there is an object type tc ∈ TM),
• all enumeration types E ∈ ENUM ,
• the collection type Set(t) for an arbitrary t ∈ TM ,
• and OclAny as super type of all other types except for Set(t). 12

– ≤M is partial order on TM representing a type hierarchy over TM , where

11 Since an association end with both lower bound and upper bound set to 0 does not
really make sense.

12 TM reflects the type hierarchy in the left part of Figure 2.

11

• Integer ≤M Real,

• tc ≤M tc′ if c ≺ c′, and

• t ≤M OclAny for all t ∈ T̂ with T̂ representing the set of all basic,
enumeration, and object types in TM .

– and ΩM is a set of operations on TM consisting of

• an exhaustive set of predefined operations on primitive data types such
as comparison operations on Integer, implication on Boolean, etc.,

• operations allInstancestc for obtaining all objects of type tc,

• operations a : tc → t to access type attributes,

• operations c′ : tc → tc′ with assoc ∈ ASSOC, associates(assoc) =
(c, c′), multiplicities(assoc) = (Mc,Mc′), and Mc′ ⊆ {0, 1} to access
single-valued navigable association ends of a given type tc,

• operations c′ : tc → Set(tc′) with assoc ∈ ASSOC, associates(assoc) =
(c, c′), multiplicities(assoc) = (Mc,Mc′), and Mc′ * {0, 1} to access
multi-valued navigable association ends of a given type tc,

• operations on sets (isEmpty, notEmpty, includes, includesAll, excludes,
excludesAll, including, excluding, size, union, −, intersection, and
symmetricDifference),

• the constructor mkSett for creating a set with elements of type t,

• and operations equality (=) and non-equality (6=) for all types t ∈ TM .

Definition 4 (Semantics of a Data Signature). The semantics of a data
signature ΣM = (TM ,≤M , ΩM) over an object model M is a structure I(ΣM) =
(I(TM), I(≤M), I(ΩM)) where

– I(TM) assigns each t ∈ TM an interpretation I(t), e.g.,

• I(Real) = R,

• I(tc) = σ≺CLASS(c),

• I(E) = literals(E),

• I(Set(t)) = F (I(t)) where F (I(t)) is the set of all finite subsets of I(t),

• and I(OclAny) =
⋃
t∈T̂ I(t).

– I(≤M) implies for all types t, t′ ∈ TM that I(t) ⊂ I(t′) if t ≤M t′,

– and I(ΩM) assigns each operation ω : t1×· · ·×tn → t ∈ ΩM a total function
I(ω) = I(t1)× · · · × I(tn)→ I(t), e.g.,

• I(42) = 42,

• I(+Integer)(i, j) = i+ j for integers i and j,

• I(allInstancestc) = σCLASS(c),

• I(att : tc → t) = σATT (att)(c) with c ∈ σCLASS(c),

• I(c′ : tc → tc′) = c′ with (c, c′) ∈ σASSOC(assoc),

• I(c′ : tc → Set(tc′)) = {c′ | (c, c′) ∈ σASSOC(assoc)},
• I(notEmpty(S)) = (S 6= ∅),

• I(mkSett(v1, . . . , vn)) = {v1, . . . , vn} with values vi ∈ I(t) for 1 ≤ i ≤ n,

• and I(=t)(v1, v2) = (v1 = v2) with values v1, v2 ∈ I(t).

12

For specifying expressions for Essential OCL we use a data signature over an
object model M as defined above (ΣM = (TM ,≤M , ΩM)), a family of variable
sets indexed by types t ∈ TM (V ar = {V art}t∈TM

), and a set of environments
Env = {τ | τ = (σ, β)} with system states σ and variable assignments β :
V art → I(t) that map variable names to values.

Definition 5 (Essential OCL Expressions). Let ΣM = (TM ,≤M , ΩM) be
a signature over an object model M . Let V ar = {V art}t∈TM

be a family of
variable sets indexed by types t ∈ TM . Let Env = {τ | τ = (σ, β)} be a set of
environments with system states σ and variable assignments β : V art → I(t)
which map variable names to values. The family of Essential OCL expressions
over ΣM is given by Expr = {Exprt}t∈TM

representing sets of expressions. The
semantics of an Essential OCL expression e ∈ Exprt is a function I JeK : Env →
I(t) . Both, syntax and semantics, are defined inductively as follows.

– VariableExpressions: v ∈ Exprt for each variable v ∈ V art.13 Moreover,
I JvK (τ) = β(v) for each τ = (σ, β) ∈ Env.

– OperationExpressions: e := ω(e1, · · · , en) ∈ Exprt for each operation sym-
bol ω : t1 × · · · × tn → t ∈ ΩM and for all ei ∈ Exprti(1 ≤ i ≤ n). 14

Moreover, I Jω(e1, · · · , en)K (τ) = I(ω)(τ)(I Je1K (τ), · · · , I JenK (τ)) for each
τ ∈ Env. Tables 1 to 3 give an overview on the syntax and semantics of
concrete operation expressions in Essential OCL 15.

– IfExpressions: If e1, e2, e3 ∈ ExprBoolean then e := if e1 then e2 else e3
∈ ExprBoolean. 16 Moreover,

I Jif e1 then e2 else e3K (τ) =

{
I Je2K (τ) if I Je1K (τ) = true
I Je3K (τ) otherwise

for each τ ∈ Env. 17

– TypeExpressions: If e ∈ Exprt and t, t′ ∈ TM then
• e.oclIsTypeOf(t′) ∈ ExprBoolean,
• e.oclIsKindOf(t′) ∈ ExprBoolean, and
• e.oclAsType(t′) ∈ Exprt′ . 18

Moreover,
• I Je.oclIsTypeOf(t′)K (τ) = true if I JeK (τ) ∈ I(t′)−

⋃
t′′≤M t′ I(t′′),

• I Je.oclIsKindOf(t′)K (τ) = true if I JeK (τ) ∈ I(t′), and

13 This means, that a VariableExpression refers to a variable, being either a context
variable or an iterator variable (see Figure 2).

14 Operations in ΩM include: predefined operations on data types (OperationCallExp),
class attribute operations, navigable association end operations (both
PropertyCallExp), and constants (LiteralExp), see Figure 2.

15 For primitive types we present selected operations only.
16 Refers to an IfExpression in Figure 2.
17 Alternatively, we can define the semantics of a conditional expression by using the

equivalent logical expression: I Jif e1 then e2 else e3K (τ) = ((I Je1K (τ) ∧ I Je2K) ∨
(¬I Je1K ∧ I Je3K)).

18 Refers to a TypeExpression in Figure 2.

13

• I Je.oclAsType(t′)K (τ) = I JeK (τ) for t′ ≤M t and I JeK (τ) ∈ I(t′)

for each τ ∈ Env.
– IteratorExpressions: If s ∈ ExprSet(t), v ∈ V art, b ∈ ExprBoolean, e1 ∈
Exprt′ , and e2 ∈ ExpSet(t′) then

• s→ exists(v | b) ∈ ExprBoolean,
• s→ forAll(v | b) ∈ ExprBoolean,
• s→ select(v | b) ∈ ExprSet(t),
• s→ reject(v | b) ∈ ExprSet(t),
• s→ collect(v | e1) ∈ ExprSet(t′), and
• s→ collect(v | e2) ∈ ExprSet(t′). 19 20 21

Moreover,

• I Js→ exists(v|b)K (τ) =

{
false if I JsK (τ) = ∅∨
1≤i≤n

I JbK (σ, β{v/xi}) if I JsK (τ) = {x1, . . . , xn} ,

• I Js→ forAll(v|b)K (τ) =

{
true if I JsK (τ) = ∅∧
1≤i≤n

I JbK (σ, β{v/xi}) if I JsK (τ) = {x1, . . . , xn} ,

• I Js→ select(v|b)K (τ) = {x | x ∈ I JsK (τ) ∧ I JbK (σ, β{v/x}) = true},
• I Js→ reject(v|b)K (τ) = {x | x ∈ I JsK (τ) ∧ I JbK (σ, β{v/x}) = false},
• I Js→ collect(v|e1)K (τ) = {I Je1K (σ, β{v/x}) | x ∈ I JsK (τ)}, and
• I Js→ collect(v|e2)K (τ) =

⋃
x∈IJsK(τ) I Je2K (σ, β{v/x}),

for each τ ∈ Env, where β{v/x} denotes the substitution of all occurrences
of v in β by x.22

As mentioned above, we concentrate on invariants being formulated in Essential
OCL. Therefore, we consider invariants and OCL constraints as synonyms in the
remainder of this paper.

Definition 6 (Essential OCL Invariant). An Essential OCL invariant is a
Boolean OCL expression with a free variable v ∈ V arC where C is a classifier
type. The concrete syntax of an invariant is: context v:C inv : <expr>. The
set InvariantM denotes the set of all Essential OCL invariants over M .

Remark 1. The following properties hold for Essential OCL invariants:

19 Refers to an IteratorExpression in Figure 2.
20 Please note, that this formal definition of collect results in sets of values instead of

bags possibly yielding duplicate values. This means, that the translation approach
presented in this paper thus restricts the expressiveness of collect. However, in many
circumstances, not the number of duplicate values is crucial, but the collection of
distinct values [6].

21 Although these expressions operate on sets, they do not represent set operations.
Therefore, they are not listed in Tables 2 and 3.

22 Note, that in [12] and [1] the semantics of iterator expressions is defined in a more
common but slightly different way. However, the definition presented here is quite
obvious. Nevertheless, the equivalence of both definitions has to be shown.

14

1. An invariant context v:C inv: expr is equivalent to C.allInstances ->

forAll(v|expr). As a consequence, the semantics of an invariant is equal
to the semantics of the equivalent Essential OCL expression.

2. Navigation shortcuts to collections are not contained in other navigation ex-
pressions, e.g., somePetriNet.place.preArc -> notEmpty() is replaced by
somePetriNet.place -> collect(p:Place|p.preArc) -> notEmpty().

3. Iterator expressions are completed, i.e., the iterator variable is explicitly
declared. Moreover, a variable declaration is always complete, i.e., it consists
of a variable name and a type name.

15

O
p
e
ra

ti
o
n

S
y
n
ta

x
S
e
m
a
n
ti
c
s

ω
∈
Ω
M

e
∈
E
x
p
r

I
Je

K(
τ
)

w
it

h
τ

=
(σ
,β

)
∈
E
n
v

A
ll

T
y
p

es
=

:
t
×
t
→
B
oo
le
a
n

e 1
=
e 2
∈
E
x
p
r B

o
o
le
a
n

w
it

h
e 1
,e

2
∈
E
x
p
r t

I
Je

1
K(
τ
)

=
I

Je
2
K(
τ
)

6=
:
t
×
t
→
B
oo
le
a
n

e 1
<
>
e 2
∈
E
x
p
r B

o
o
le
a
n

w
it

h
e 1
,e

2
∈
E
x
p
r t

I
Je

1
K(
τ
)
6=
I

Je
2
K(
τ
)

P
ri

m
it

iv
e

T
y
p

es
+

:
I
n
t
×
I
n
t
→
I
n
t

e 1
+
e 2
∈
E
x
p
r I
n
te
g
e
r

I
Je

1
K(
τ
)

+
I

Je
2
K(
τ
)

w
it

h
e 1
,e

2
∈
E
x
p
r I
n
te
g
e
r

≤
:
R
ea
l
×
R
ea
l
→
B
oo
le
a
n

e 1
≤
e 2
∈
E
x
p
r B

o
o
le
a
n

I
Je

1
K(
τ
)
≤
I

Je
2
K(
τ
)

w
it

h
e 1
,e

2
∈
E
x
p
r R
e
a
l

a
n
d

:
B
oo
le
a
n
×
B
oo
le
a
n

e 1
a
n
d
e 2
∈
E
x
p
r B

o
o
le
a
n

I
Je

1
K(
τ
)
∧
I

Je
2
K(
τ
)

→
B
oo
le
a
n

w
it

h
e 1
,e

2
∈
E
x
p
r B

o
o
le
a
n

ω
:→

S
tr
in
g

’
f
o
o
’
∈
E
x
p
r S
tr
in
g

′ f
oo
′

O
b

je
ct

T
y
p

es
a
ll
I
n
st
a
n
ce
s

:→
t c

t c
.a
ll
I
n
st
a
n
ce
s(

)
∈
E
x
p
r S
e
t(
t c

)
σ
C
L
A
S
S

(c
)

a
tt

:
t c
→
t d

e c
.a
tt
∈
E
x
p
r t

d
w

it
h
e c
∈
E
x
p
r t

c
σ
A
T
T

(a
tt

)(
I

Je
c
K(
τ
))

c′
:
t c
→
t c
′

w
it

h
e c
.c
′
∈
E
x
p
r t

c
′

w
it

h
e c
∈
E
x
p
r t

c
c′

w
it

h
(I

Je
c
K(
τ
),
c′

)

a
ss
oc
ia
te
s(
a
ss
oc

)
=

(c
,c
′)

∈
σ
A
S
S
O
C

(a
ss
oc

)

c′
:
t c
→
S
et

(t
c
′)

w
it

h
e c
.c
′
∈
E
x
p
r S
e
t(
t c
′)

w
it

h
e c
∈
E
x
p
r t

c
{c
′
|(
I

Je
c
K(
τ
),
c′

)

a
ss
oc
ia
te
s(
a
ss
oc

)
=

(c
,c
′)

∈
σ
A
S
S
O
C

(a
ss
oc

)}

Table 1. Syntax and semantics of operation expressions in Essential OCL

16

S
e
t
O
p
e
ra

ti
o
n

S
y
n
ta

x
S
e
m
a
n
ti
c
s

ω
∈
Ω
M

e
∈
E
x
p
r

I
Je

K(
τ
)

w
it

h
τ

=
(σ
,β

)
∈
E
n
v

si
z
e

:
S
et

(t
)
→
I
n
te
g
er

s
→
si
z
e(

)
∈
E
x
p
r I
n
te
g
e
r

w
it

h
s
∈
E
x
p
r S
e
t(
t)

|I
Js

K(
τ
)
|

is
E
m
p
ty

:
S
et

(t
)
→
B
oo
le
a
n

s
→
is
E
m
p
ty

()
∈
E
x
p
r B

o
o
le
a
n

w
it

h
s
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)

=
∅

n
ot
E
m
p
ty

:
S
et

(t
)
→
B
oo
le
a
n

s
→
n
ot
E
m
p
ty

()
∈
E
x
p
r B

o
o
le
a
n

w
it

h
s
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
6=

∅

in
cl
u
d
es

:
S
et

(t
)
×
t
→
B
oo
le
a
n

s
→
in
cl
u
d
es

(e
)
∈
E
x
p
r B

o
o
le
a
n

I
Je

K(
τ
)
∈
I

Js
K(
τ
)

w
it

h
s
∈
E
x
p
r S
e
t(
t)

a
n
d
e
∈
E
x
p
r t

ex
cl
u
d
es

:
S
et

(t
)
×
t
→
B
oo
le
a
n

s
→
ex
cl
u
d
es

(e
)
∈
E
x
p
r B

o
o
le
a
n

I
Je

K(
τ
)
/∈
I

Js
K(
τ
)

w
it

h
s
∈
E
x
p
r S
e
t(
t)

a
n
d
e
∈
E
x
p
r t

in
cl
u
d
es
A
ll

:
S
et

(t
)
×
S
et

(t
)

s
→
in
cl
u
d
es
A
ll

(s
′)
∈
E
x
p
r B

o
o
le
a
n

I
Js
′ K

(τ
)
⊆
I

Js
K(
τ
)

→
B
oo
le
a
n

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

ex
cl
u
d
es
A
ll

:
S
et

(t
)
×
S
et

(t
)

s
→
ex
cl
u
d
es
A
ll

(s
′)
∈
E
x
p
r B

o
o
le
a
n

I
Js

K(
τ
)
∩
I

Js
′ K

(τ
)

=
∅

→
B
oo
le
a
n

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

Table 2. Syntax and semantics of set operation expressions in Essential OCL (Part 1)

17

S
e
t
O
p
e
ra

ti
o
n

S
y
n
ta

x
S
e
m
a
n
ti
c
s

ω
∈
Ω
M

e
∈
E
x
p
r

I
Je

K(
τ
)

w
it

h
τ

=
(σ
,β

)
∈
E
n
v

m
k
S
et
t

:
t
×
··
·×

t
→
S
et

(t
)

m
k
S
et
t
(e

1
,.
..
,e
n
)
∈
E
x
p
r S
e
t(
t)

w
it

h
e i
∈
E
x
p
r t

{I
Je

1
K(
τ
),
..
.,
I

Je
n
K(
τ
)}

u
n
io
n

:
S
et

(t
)
×
S
et

(t
)
→
S
et

(t
)
s
→
u
n
io
n

(s
′)
∈
E
x
p
r S
e
t(
t)

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
∪
I

Js
′ K

(τ
)

in
te
rs
ec
ti
on

:
S
et

(t
)
×
S
et

(t
)

s
→
in
te
rs
ec
ti
on

(s
′)
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
∩
I

Js
′ K

(τ
)

→
S
et

(t
)

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

−
:
S
et

(t
)
×
S
et

(t
)
→
S
et

(t
)

s
−
s′
∈
E
x
p
r S
e
t(
t)

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
−
I

Js
′ K

(τ
)

sy
m
m
et
ri
cD
if
f
er
en
ce

:
s
→
sy
m
m
et
ri
cD
if
f
er
en
ce

(s
′)
∈
E
x
p
r S
e
t(
t)

(I
Js

K(
τ
)
∪
I

Js
′ K

(τ
))
−

S
et

(t
)
×
S
et

(t
)
→
S
et

(t
)

w
it

h
s,
s′
∈
E
x
p
r S
e
t(
t)

(I
Js

K(
τ
)
∩
I

Js
′ K

(τ
))

in
cl
u
d
in
g

:
S
et

(t
)
×
t
→
S
et

(t
)

s
→
in
cl
u
d
in
g
(e

)
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
∪
{I

Je
K(
τ
)}

w
it

h
s
∈
E
x
p
r S
e
t(
t)

a
n
d
e
∈
E
x
p
r t

ex
cl
u
d
in
g

:
S
et

(t
)
×
t
→
S
et

(t
)

s
→
ex
cl
u
d
in
g
(e

)
∈
E
x
p
r S
e
t(
t)

I
Js

K(
τ
)
−
{I

Je
K(
τ
)}

w
it

h
s
∈
E
x
p
r S
e
t(
t)

a
n
d
e
∈
E
x
p
r t

Table 3. Syntax and semantics of set operation expressions in Essential OCL (Part 2)

18

3 Nested Graph Constraints

In the following, we recall the formal definition of typed, attributed graphs with
node type inheritance as presented in [15]. They form the basis to define typed
attributed nested graph constraints.

3.1 Graphs

Attributed graphs as defined here allow to attribute nodes only while the original
version [15] supports also the attribution of edges.

Definition 7 (A-graphs). An A-graph G = (GV , GD, GE , GA, srcG, tgtG,
srcA, tgtA) consists of sets GV and GD, called graph and data nodes (or vertices),
respectively, GE and GA, called graph and node attribute edges, respectively,
and source and target functions: srcG : GE → GV , tgtG : GE → GV for graph
edges and srcA : GA → GV , tgtA : GA → GD for node attribute edges. Given two
A-graphs G1 and G2, an A-graph morphism f : G1 → G2 is a tuple of functions
fV : G1

V → G2
V , fD : G1

D → G2
D, fE : G1

E → G2
E and fA : G1

A → G2
A such that f

commutes with all source and target functions, e.g. fV ◦ src1G = src2G ◦ fE . An
A-graph morphism f is injective if the functions fV , fD, fE , and fA are injective.
An injective morphism f : G → H is an inclusion if nG(x) ⊆ nH(f(x)) for all
items x ∈ G.

G1
E G1

V G1
A G1

D

G2
E G2

V G2
A G2

D

src1G(tgt1G) src1A tgt1A

src2G(tgt2G) src2A tgt2A

fE fV fA fD= = =

We assume that the reader is familiar with the basics of algebraic specification.
In [15], Appendix B, a short introduction to algebraic signatures and algebras,
including term algebras, quotient term algebras, and final algebras is given. For
a deeper introduction see e.g. [16,17]. The definition of attributed graphs gen-
eralizes largely the one in [18] by allowing variables and a set of formulas that
constrain the possible values of these variables. The definition is closely related
to symbolic graphs [19].

Definition 8 (Attributed graphs). LetDSIG = (S,OP) be a data signature,
X = {Xs}s∈S a family of variables, and TDSIG(X) the term algebra w.r.t. DSIG
and X. An attributed graph over DSIG and X is a tuple AG = (G,D,Φ) where
G is an A-graph, D is a DSIG-algebra with

∑
s∈S Ds = GD, and Φ is a finite set

of DSIG-formulas23 with free variables in X. A set {F1, . . . , Fn} of formulas can

23 DSIG-formulas are meant to be DSIG-terms of sort BOOL. One may consider e.g.
a set of literals.

19

be regarded as a single formula F1∧. . .∧Fn. An attributed graph AG = (G,D, ∅)
with an empty set of formulas is basic and is shortly denoted by AG = (G,D).

Given two attributed graphsAG1 andAG2, an attributed graph morphism f : AG1

→ AG2 is a pair f = (fG, fD) of an A-graph morphism fG : G1 → G2 and a
DSIG-homomorphism fD : D1 → D2 such that (1) commutes for all s ∈ S,
fG,GD

=
∑
s∈S fD,s, and Φ2 ⇒ f(Φ1) where f(Φ1) is the set of formulas ob-

tained when replacing in Φ1 every variable x in G1 by f(x). An attributed graph
morphism f is injective (an inclusion) if fG and fD are injective (inclusions).

G1
D

G2
D

D1
s

D2
s

fD,sfG,GD (1)

Remark 2. We are interested in the case where D1
s is a DSIG-term alge-

bra and D2
s is a DSIG-algebra (without variables). In this case the DSIG-

homomorphism assigns values to variables and terms.

Attributed graphs in the sense of [18] correspond to basic attributed graphs. The
results for basic attributed graphs can be generalized to arbitrary attributed
graphs: attributed graphs and morphisms form the category AGraphs. The
category has pushouts and E ′-M pair factorization in the sense of [18].

Fact 1 (properties of attributed graphs).

1. Attributed graphs and attributed morphisms form the category AGraphs.
2. The category AGraphs has pushouts and E ′-M pair factorization.
3. Pushouts are unique up to isomorphism. More precisely, if (H,ΦH) and

(H ′, ΦH′) are both pushout objects of the same morphisms K → R and
K → D, Then H and H ′ are isomorphism and ΦH and ΦH′ are equivalent.

4. For every direct transformation G ⇒ H (see Definition 18) via an injective
morphism g in basic AGraphs and every set of formulas ΦG, there is some
ΦH such that (G,ΦG)⇒ (H,ΦH) is a direct transformation in AGraphs.

Proof. The proof follows more or less from [18].

1. Straightforward.
2. Let r : K → R and d : K → D be attributed morphisms on basic attributed

graphs and ΦK , ΦR, ΦD be the corresponding sets of formulas. By [18], there
is a basic attributed graph H and basic attributed morphisms r′ : R →
H and h : D → H such that (1) is a pushout. Let ΦH be equivalent to
r′(ΦD) ∪ h(ΦR). Then ΦH ⇒ r′(ΦD) and ΦH ⇒ h(ΦR), i.e. r′ and h are
attributed morphisms. E ′-M pair factorization is straightforward.

3. Let l : K → L and g : L → G be injective attributed morphisms on basic
attributed graphs and ΦK , ΦL, ΦG be the corresponding sets of formulas. If

20

D is a pushout complement of K → L → G with morphisms d : K → D
and inclusion l′ : D → G, define ΦD be equivalent to (ΦG − g(ΦL − l(ΦK)).
By definition of ΦD, inclusion l′, and g ◦ l = l′ ◦ d, we have ΦG ⇒ ΦG −
g(ΦL − l(ΦK)) ≡ ΦD ≡ l′(ΦD) and ΦD ≡ ΦG − g(ΦL − l(ΦK)) ≡ ΦG −
g(ΦL) + gl(ΦK)⇒ gl(ΦK)) ≡ l′d(ΦK)⇒ d(ΦK), i.e., l′ and d are attributed
morphisms. Then statement 3 follows with the help of statement 2.

4. Straightforward.

2

Typed attributed graphs and morphisms form a category that has pushouts and
E ′-M pair factorization.

Fact 2 ([8]). ATGI-graphs and morphisms form the category AGraphsATGI

with pushouts and E ′-M pair factorization in the sense of [15].

In [8], also typed attributed graphs typed over attributed type graphs with
inheritance [20] are considered.

Definition 9 (Typed attributed graph over ATGI). An attributed type
graph with inheritance ATGI = (TG,Z, I) consists of an A-graph, a final DSIG-
algebra Z, and a simple 24 inheritance graph I with IV = TGV . For each node
v ∈ IV , the inheritance clan is defined by clanI(v) = {v′ ∈ IV | ∃ path v′

∗→
v in I}25. If I is discrete26, ATGI is an attributed type graph.

A typed attributed graph (AG, type) over ATGI, short ATGI-graph, consists of
an attributed graph AG = (G,D,Φ) and a clan morphism type : AG→ ATGI.

A clan morphism type consists of typing functions typeV : GV → TGV , typeD :
GD → TGD for nodes, typeE : GE → TGE , typeA : GA → TGA for edges, and
the unique final DSIG-homomorphism typeDSIG : D → Z such that:

– typeV ◦ srcGE � clanI ◦ srcTGE ◦ typeE27

– typeV ◦ tgtGE � clanI ◦ tgtTGE ◦ typeE
– typeV ◦ srcGA � clanI ◦ srcTGA ◦ typeA
– typeD ◦ tgtGA = tgtTGA ◦ typeA
– typeDSIG,s = typeD|Ds

for all s ∈ S.

TGE TGV TGA TGD

GE GV GA GD
srcG(tgtG) srcA tgtA

srcTGE(tgtTGE) srcGA

typeE typeV typeA typeD

tgtTGA

� � =

24 A graph is simple if it has neither multiple edges nor loops.
25 v′

∗→ v in I stands for a directed path in I from v′ to v of length ≥ 0.
26 A graph is discrete if the edge set is empty.
27 For functions f : A → B, g : A → clanI(B), f � g means f(x) ∈ clanI(g(x)) for all
x ∈ A where clanI(B) = {clan(v) | v ∈ B}.

21

A clan morphism type is injective (an inclusion) if typeV , typeE , and typeDSIG
are injective (inclusions).

Given two ATGI-graphs AG1 = (G1, type1) and AG2 = (G2, type2), an ATGI-
morphism f : AG1 → AG2 is an attributed graph morphism such that type2◦f =
type1.

ATGI

AG1 AG2
f

type1 type2
=

Fact 3 (properties of typed attributed graphs).

1. ATGI-graphs and ATGI-morphisms form the category AGraphsATGI.
2. The category has pushouts.
3. For every pushout complement D of K → L→ G in basic AGraphs, there is

a pushout complement (D, typeD) of (K, typeK)→ (L, typeL)→ (G, typeG)
in AGraphsATGI.

4. For every direct transformation G ⇒ H in AGraphs and every typing
function typeG, there is a some typeH such that (G, typeG)⇒ (H, typeH) a
direct transformation in AGraphsATGI.

Proof. The first statement is straightforward. The other statements follow di-
rectly from [18], Lemma 13.13. 2

3.2 Nested Graph Constraints

Graph conditions [21,22] are nested constructs which can be represented as trees
of morphisms equipped with quantifiers and Boolean connectives. In the follow-
ing, we introduce ATGI-conditions as injective conditions over ATGI-graphs28,
closely related to attributed graph constraints [19] and E-conditions [23]. Graph
conditions are implemented e.g. in the systems AGG, GROOVE, and GrGen.

Definition 10 (Nested graph conditions). A (nested) graph condition on
typed attributed graphs, short condition, over a graph P is of the form true or
∃(a, c) where a : P → C is an injective morphism and c is a condition over C.
Boolean formulas over conditions over P yield conditions over P , that is, for
conditions c, ci (i ∈ I) over P , ¬c and

∧
i∈I ci are conditions over P . Conditions

over the empty graph ∅ are called constraints. In the context of rules, conditions
are called application conditions.

Notation. Graph conditions may be written in a more compact form: ∃a abbre-
viates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), false abbreviates ¬true,

∨
i∈I ci

abbreviates ¬
∧
i∈I ¬ci, c ⇒ c′ abbreviates ¬c ∨ c′, c ⇔ c′ abbreviates (c ⇒

c′) ∧ (c′ ⇒ c), and c Y c′ abbreviates (c ∧ ¬c′) ∨ (¬c ∧ c′).
28 A graph condition is injective if it is built by injective morphisms.

22

The satisfaction of a condition is established by the presence and absence of
certain morphisms from the graphs within the condition to the tested graph. The
presented injective satisfiability notion restricts these morphisms to be injective:
no identification of nodes and edges is allowed. In this way, explicit counting
such as the existence/non-existence of n nodes is easily expressible.

Definition 11 (Semantics). Satisfiability of a condition over P by an injective
morphism p : P → G is inductively defined as
follows: p satisfies true. p : P → G satisfies
∃(P a→C, c) if there exists an injective mor-
phism q : C → G such that p = q ◦ a and q
satisfies c.

P C

G

a

p q

∃ c
=

For Boolean formulas over conditions, the semantics is as usual: p satisfies ¬c if
p does not satisfy c, and p satisfies

∧
i∈I ci if p satisfies each ci (i ∈ I). We write

p |= c if p : P → G satisfies the condition c over P . Satisfiability of a constraint,
i.e. a condition over the empty graph ∅, by a graph is defined as follows: A graph
G satisfies a constraint c, short G |= c, if the injective morphism p : ∅ → G
satisfies c. Two conditions c and c′ over P are equivalent, denoted c ≡ c′, if, for
all injective morphisms p : P → G, p |= c iff p |= c′.

The definition of conditions is very rigid. In the following, we will be more flexible
and consider so-called lax conditions based on inclusions.

Lax conditions are built from true and arbitrary connections ∃(C, c) between
a graph C and a lax condition c. Lax conditions may be built from conditions
as follows: Without loss of generality, conditions are based on inclusions. For
each inclusion in a condition, the domain is not represented whenever it can
unambiguously inferred, e.g. ∀(C1,∃(C2, c)) := ∀(∅ → C1,∃(C1 → C2, c)). Inclu-
sions are given by the names of nodes (and edges), e.g. ∃(u ,∃(v ,∃(u vrole))).
Nodes of graph are decorated by a set of names, e.g. nG(v) = {u, v}, written as
u = v, where the index G refers to the graph in consideration.

Definition 12 (Lax conditions). A lax condition on typed attributed graphs
is of the form true or ∃(C, c) where C is a graph and c is a lax condition. Boolean
formulas over lax conditions yield lax conditions. ∃(C) abbreviates ∃(C, true).

Example 2. ∃(u ,∃(v ,∃(u vrole))) is a lax condition, meaning that there
exists a node and a node and an edge of type role between them.

Convention. Lax conditions are drawn as follows: Graphs in lax conditions are
drawn in a standard way: Nodes are depicted by rectangles v:T carrying the
node name v (or, more general, a set of names n(v)) and its type T inside. In
the case of n(v) = {u, v}, we write u = v inside the rectangle. Edges are drawn
by arrows pointing from the source to the target node and the edge label is
placed next to the arrow. Inclusions are given by the names of the nodes: Two
occurrences of v in different graphs of the lax condition, e.g. ∃(v ,∃(v , c)) or
∃(u ,∃(u=v)), mean that they are in inclusion relation.

23

In the following, the graphs in consideration are equipped by an injective name
function nG assigning a set of names to each item such that and each item
is in its name set and different items have disjoint name sets, i.e. x ∈ nG(x)
and x 6= y implies nG(x) ∩ nG(y) = ∅ for all items x, y in G29. Moreover, the
definition of an inclusion is extended to these graphs as follows: An injective
morphism f : G→ H is an inclusion if nG(v) ⊆ nH(fV (v)) for all nodes v ∈ VG

and fE(e) = e for all e ∈ EG.

The semantics of lax conditions is defined by the semantics of conditions. For
this purpose, we “complete” lax conditions to conditions.

Construction (From lax conditions to conditions30). For a graph P and a
lax condition d, Complete(P, d) denotes the condition over P , inductively defined
as follows:

∅

P

C ′

C

b

a

c
Complete(P, true) = true.

Complete(P,∃(C ′, c)) =
∨

(a,b)∈F ∃(P
a→C,Complete(C, c))

where F = {(a, b) | (a, b) jointly surjective, a, b inclusions.}.31
Complete(P,¬c) = ¬Complete(P, c).
Complete(P,∧i∈Jci) = ∧i∈JComplete(P, ci).

Example 3. The completion of the lax condition ∃(u ,∃(v ,∃(u vrole))) over
the empty graph ∅ yields the condition ∃(∅ → u ,∃(u → u v ,∃(u v →
u vrole))), meaning that there exist two nodes together with a connecting edge
of type role.

In more detail:

Complete(∅,∃(u ,∃(v ,∃(u vrole))))

≡ ∃(∅ → u ,Complete(u ,∃(v ,∃(u vrole))))

≡ ∃(∅ → u ,∃(u → u v ,Complete(u v ,∃(u vrole)))

∨ ∃(u → u=v ,Complete(u=v ,∃(u vrole))))

≡ ∃(∅ → u ,∃(u → u v ,∃(u v → u vrole))
∨ ∃(u → u=v , false))

≡ ∃(∅ → u ,∃(u → u v ,∃(u v → u vrole))).

Definition 13 (Semantic of lax conditions). Satisfiability of a lax condition
is defined by the satisfiability of the corresponding condition: For an injective

29 If we don’t want to distinguish between nodes and edges we use the notation item
and x ∈ G means x ∈ GV or x ∈ GE .

30 The Complete and the Shift construction in [24] look very similar. While Shift is
based on injective morphisms, Complete is restricted on inclusions. Complete is based
on empty morphisms and completes lax conditions ∃(C, c) with empty morphism ∅ →
C with respect to an empty morphism b : → P ′. Instead of the empty morphisms,
we write the codomain of the morphisms.

31 A pair of morphisms (a, b) is jointly surjective if, for each x ∈ C, there is a preimage
y ∈ P with a(y) = x or a preimage z ∈ C′ with b(z) = x.

24

morphism p : P → G and a lax condition c, p |= c iff p |= Complete(P, c). Two
lax conditions c and c′ are equivalent, denoted c ≡ c′, if, the corresponding
conditions are equivalent.

By definition, lax conditions and nested graph conditions have the same expres-
sive power.

Example 4. The lax condition ∃(u ,∃(v ,∃(u vrole))) of Example 3 is equiv-
alent to the lax conditions ∃(u v ,∃(u vrole)) and ∃(u vrole) meaning that
there exist two nodes together with a connecting edge of type role.

Remark 3. We have the following simple equivalences and non-equivalences.

1. ∃(v ,∃(v , c)) ≡ ∃(v , c) and ∃(u ,∃(v , c)) ≡ ∃(u v , c)∨∃(u=v , c[u = v])
where c[u = v] is obtained from c by identifying u and v in c (a special
case of Fact 4, (E1)(a) below).

2. ∃(u ,∃(v , c)) 6≡ ∃(u v , c). If u and v are nodes in different graphs of the
lax condition without inclusion relation, then, by injective satisfiability, u
and v may be mapped differently or identified. If u and v are nodes in the
same graph of the lax condition, by injective satisfiability, then have to be
mapped differently.

Since lax conditions can be transformed into conditions automatically, lax con-
ditions are also called conditions somewhat ambiguously.

The following equivalences can be used to simplify lax conditions.

Fact 4 (Equivalences). Let C1⊕P C2 denote the gluing or pushout of C1 and
C2 along P and let P denote the set of all intersections of C1 and C2.32.

(E1) (a) ∃(C1,∃(C2)) ≡
∨
P∈P ∃(C1 ⊕P C2).

(b) ∃(C1,∃(C2)) ≡ ∃(C1+C2) if C1 and C2 are clan-disjoint33.
(c) ∃(C1,∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

(E2) (a) ∃(C1,∃(C2) ∧ ∃(C3)) ≡ ∃(C1,
∨
P∈P ∃(C2 ⊕P C3)), if for all node names

occuring in both C2 and C3, a node with that name already exists in C1.
(b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have

disjoint sets of node names.
(E3) ∃(u:T ,∃(C)∧∃(u=v:T)) ≡ ∃(u:T ,∃(C[u=v])) provided that either u or v

does not exist in C and C[u=v] is the graph obtained from C by renaming
u by u = v.

Proof. The proof of the equivalences makes use of the Pullback-Pushout-Lemma
in [26]: The pushout of the pullback of a pair (b1, b2) ∈ F leads to the pushout

32 For constructions of category theory such as pushouts and pullbacks see e.g. [25,15].
33 Two graphs C1 and C2 are clan-disjoint if the clans of the types of C1 and C2 are

disjoint. For graphs C1 and C2, C1+C2 denotes the disjoint union.

25

C1 ⊕P C2 of C1 and C2 along the pullback P . In the following, P denotes the
set of pairs (a1, a2) induced by the pairs (b1, b2) ∈ F .

P

C1

C2

C

a1

a2

b1

b2(1)

Let p : P0 → G.

(E1) (a) follows with the help of the definition of Complete:

∃(C1,∃(C2))
≡ Complete(P0,∃(C1,∃(C2)))
≡
∨

(a,b)∈F ∃(a,Complete(C ′1,∃(C2, true)))

≡
∨

(a,b)∈F ∃(a,
∨

(a′,b′)∈F ′ ∃(a′,Complete(C ′, true)))

≡
∨

(a,b)∈F ∃(a,
∨

(a′,b′)∈F ′ ∃(a′, true))

≡
∨

(a,b)∈F
∨

(a′,b′)∈F ′ ∃(a′ ◦ a)

≡
∨

(a,b)∈F Complete(C ′1,
∨
P∈P ∃(C1 ⊕P C2))

≡ Complete(P0,
∨
P∈P ∃(C1 ⊕P C2))

≡
∨
P∈P ∃(C1 ⊕P C2).

where F = {(a, b)}, F ′ is the set of pairs a′ : C1 → C, and b′ : C2 → C such that
(a′, b′) is jointly surjective and a′, b′ are inclusions, P is the pullback of (a′, b′),
and C is the pushout of C1 and C2 along P . P̃ is the common part of C1 and
C2, i.e. every pair of injective and jointly surj. (a1, b1) such that (1) extended to
P̃ commutes, is a pair of inclusions. Given the morphisms (a′, b′), some C exists
due to E-M pair factorization.

P0 C ′1 C ′

C1P ′

P C2

C

P̃

(1)

a a′

a1

b

b1

b2

b′

(b) If C1 and C2 are clan-disjoint, then ∃(C1,∃(C2)) ≡
∨
P∈P ∃(C1 ⊕P C2) ≡

∃(C1+C2) because F consists of the pair C1 → C1+C2 ← C2, P of the pair
C1 ← ∅ → C2 and C1 ⊕∅ C2 = C1+C2.

(c) If C1 ⊆ C2, then C1 is the pullback of C1 and C2 and C2 is the pushout of
C1 and C2 along C1. If C2 ⊆ C1, then C2 is the pullback of C1 and C2 and C1 is
the pushout of C1 and C2 along C2. Thus, ∃(C1,∃(C2)) ≡

∨
P∈P ∃(C1⊕P C2) ≡

∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

26

(E2) follow from the definition of Complete and |=. We show both directions
separately. For “⇒” consider the commutative diagram below.

P

P̃

C2

C3
(1)

C1

C

C ′1

C ′2

C ′3
(2)

C ′

G

P0

p

Assume p |= ∃(C1,∃(C2) ∧ ∃(C3)). By the definition of Complete, some C ′1, C ′2
and C ′3 exist. Let P̃ be the common part of (C2, C3), i.e. in every co-span C2 →
C ← C3 of inj. & jointly surj. morphisms such that (1) extended by P̃ commutes,
the morphisms are inclusions. Because all node names that are common in C2

and C3 are also contained in C1, C ′1 is the common part of C ′2 and C ′3. By E-
M pair factorization (consider (1)), some C ′ exists with C ′ → G injective. By
E-M pair factorization again (consider (2) extended by P̃), some C exists with
C → C ′ an inclusion. By definition of Complete, p |= ∃(C1,

∨
P∈P ∃(C2⊕P C3)).

For the proof’s other direction consider the commutative diagram

P

C2

C3

C

P2

P3

C ′2

C ′3

C ′

C ′1

By definition of Complete, some P ∈ P, C, C ′ and C ′1 with C ′ → G exist.
Let P2 and P3 be the common part of C ′1 and C2, C3 respectively. By E-M pair
factorization, C ′2 and C ′3 also exist and with the definiton of |=, p |= ∃(C1,∃(C2)∧
∃(C3)).

In the case of clan-disjointness of C1 and C2, ∃(C1) ∧ ∃(C2) ≡ ∃(∅,∃(C1 ∧
∃(C2)) ≡ ∃(∅,

∨
P∈P ∃(C1 ⊕P C2)) ≡ ∃(∅,∃(C1+C2)) ≡ ∃(C1+C2) because F

27

consists of the pair C1 → C1+C2 ← C2, P of the pair C1 ← ∅ → C2, and
C1 ⊕∅ C2 = C1+C2.

(E3) is a special case of (E2)(a) since C[u=v]34 = C ⊕P u=v .

2

4 Translation of Essential OCL Invariants

To translate Essential OCL invariants, we first show how to translate the type
information of meta-models, i.e. object models, to attributed type graphs with
inheritance [15]. Thereafter, system states are translated to typed attributed
graphs. Having these ingredients available, our main contribution, the translation
of Essential OCL invariants is presented and illustrated by several examples.
Finally, the correctness of the translation is shown.

4.1 Type and state correspondences

To translate Essential OCL invariants to nested graph constraints, we have to
relate object models to attributed type graphs with inheritance.

Definition 14 (Type Correspondence). Let DSIG = (S,OP) be a data sig-
nature with S = {Integer,Real, Boolean, String}. Let M = (CLASS,ENUM,
ATT,ASSOC, associates, rsrc, rtgt,multiplicities,≺) be an object model over
DSIG. We say that M corresponds to an attributed type graph with inheritance
ATGI = ((TG,Z), Inh) with

– type graph TG = (TGV , TGD, TGE , TGA, srcG, tgtG, srcA, tgtA),
– final DSIG′-Algebra Z for DSIG′ = (S′, OP ′) with S′ = S ∪ ENUM and
OP ′ = OP ∪ {=ENUM , 6=ENUM},

– and inheritance relation Inh,

if there is a correspondence relation corrtype = (corrCLASS , corrATT , corrASSOC)
with bijective mappings

– corrCLASS : CLASS → TGV such that ∀c1, c2 ∈ CLASS :
c1 ≺ c2 ⇐⇒ (corrCLASS(c1), corrCLASS(c2)) ∈ Inh,

– corrATT : ATT → TGA with
srcA(corrATT (att)) = corrCLASS(c) for c ∈ CLASS and
tgtA(corrATT (att)) = x if att : c→ s ∈ ATTc and {x} = Zs with s ∈ S′,

– corrASSOC : ASSOC → TGE with srcG ◦ corrASSOC = corrCLASS ◦ pr1
and tgtG ◦corrASSOC = corrCLASS ◦pr2 with a ∈ ASSOC, associates(a) =
〈c1, c2〉, pr1(a) = c1, pr2(a) = c2, and c1, c2 ∈ CLASS.

34 C[u = v] is the graph C with the nodes named u and v identified.

28

To show the correctness of our translation, we also need to establish a corre-
spondence relation between system states and typed attributed graphs.

Definition 15 (State Correspondence). Let DSIG = (S,OP) be a data sig-
nature with S = {Integer,Real, Boolean, String}. Let M = (CLASS,ENUM,
ATT,ASSOC, associates, rsrc, rtgt,multiplicities,≺) be an object model over
DSIG. Let ATGI = ((TG,Z), Inh) be an attributed type graph with inher-
itance and with type correspondence corrtype(M) = ATGI. We assume that
I(s) = Ds for all sorts s ∈ S′ = S ∪ ENUM .

Given a system state σ(M) = (σCLASS , σATT , σASSOC), it corresponds to an at-
tributed graph AG = (G,D) with G = (GV , GD, GE , GA, srcG, tgtG, srcA, tgtA)
typed over ATGI by clan morphism type if there is a state correspondence rela-
tion corrstate = (cCLASS , cATT , cASSOC) : States(M)→ GraphATGI defined by
the following bijective mappings

– cCLASS : σCLASS → GV with
typeGV

(cCLASS(o)) = corrCLASS(c) with o ∈ σCLASS(c) and c ∈ CLASS,

– cATT : σATT → GA with srcA(cATT (a)) = cCLASS(o) and
tgtA(cATT (a)) = d as well as typeGA

(cATT (σATT (att))) = corrATT (att) and
a ∈ σATT (att) if att : c → s ∈ ATT≺c , σATT (att) : σCLASS(c) → Ds,
o ∈ σCLASS(c), c ∈ CLASS and σATT (att)(o) = d,

– cASSOC : σASSOC → GE with
srcG ◦ cASSOC = cCLASS ◦ pr1 and tgtG ◦ cASSOC = cCLASS ◦ pr2
with l = (o1, o2) ∈ σASSOC(assoc), pr1(l) = o1, and pr2(l) = o2.
Furthermore, typeGE

◦ cASSOC(σASSOC) = corrASSOC(ASSOC).

Figure 3 illustrates the concepts of both correspondences.

ASSOC

pr1,pr2

�� ��

corrASSOC

// TGE

srcG,tgtG

�� ��
CLASS

corrCLASS

//

ATT

��

TGV

corrATT

// TGA

srcA

OO

tgtA

��
Zs = Zs

σASSOC

pr1,pr2

�� ��

cASSOC

// GE

srcG,tgtG

�� ��
σCLASS cCLASS

//

σATT

��

GV

cATT

// GA

srcA

OO

tgtA

��
Ds = Ds

Fig. 3. Type and system state correspondences

29

4.2 Translation

In the following, we present the translation of a substantial part of Essential
OCL to nested conditions. This translation is shown to correspond to the one
given earlier in [8] and furthermore, it is proven to be correct .

– The translation proceeds along the abstract syntax tree of the OCL con-
straint. For example, given a->union(b)->notEmpty(), we first translate
notEmpty, followed by union and then its arguments a and b.

– The set operations themselves are translated with the characteristic function
in mind, e.g., the characteristic function of a->union(b) is the disjunction
of the characteristic functions of a and b: v ∈ A ∪ B iff v ∈ A ∨ v ∈ B.
Navigation expressions, which yield a single object, are treated like single-
element sets.

– When translating an OCL operation which yields a set of objects (translation
trS), we pass a single node as an extra parameter serving as representative

of the set: trS(a->union(b), v:T) := trS(a, v:T) ∨ trS(b, v:T).

As an introducing example let’s have a look at OCL expressions of the form
a->exists(v:T | b) as part of an invariant. We start at the outermost part,
that is exists(v:T | b). This is translated in a first step to ∃(v:T , trE(b)),
where trE denotes the translation of a Boolean expression and depends solely on
b. Now we have to formalize that v:T comes from the set described by a. This is
done by giving a predicate trS(a, v:T) that describes the set precisely. Because

we need the predicate over v:T , we pass v:T as a parameter to trS . So the trans-
lation of the whole expression a->exists(v:T | b) becomes ∃(v:T , trE(b) ∧
trS(a, v:T)), because v:T has to fulfill both trE(b) and trS(v:T , a). However,
in our final translation process we join the two steps presented here. To mo-
tivate the translation of set expressions, let’s assume that a in the example is
self.preArc->union(self.postArc) with self of type Transition and v of

type Arc. We have trS(self.preArc->union(self.postArc), v:Arc), describ-

ing the union of the preArc and postArc sets. Then v:Tr is contained in the
entire set iff it is connected to self via a preArc or postArc relation. We derive

trS(self.preArc->union(self.postArc), v:Arc) ≡ ∃(self:Tr v:Arc
preArc

) ∨
∃(self:Tr v:Arc

postArc
). The translation of the overall expression self.preArc->

union(self.postArc)->exists(v:Arc | b) is ∃(v:Arc , trE(b) ∧
(∃(self:Tr v:Arc

preArc
) ∨ ∃(self:Tr v:Arc

postArc
))). In general we denote four

functions that each translate one type of OCL expression: We use trI for the
translation of invariants and trE , trN and trS for Boolean expressions, navi-
gation to a single object and expressions yielding a set, respectively. Since we
can treat a single object as a set containing one element, the translations of
navigation into a set (trS) and to a single node (trN) are technically the same.
However, we distinguish them formally.

– We can express expr1->exists(v:T | expr2) as “there exist objects v of
type T, such that v is contained in the set described by expr1 and v satisfies

30

expr2”, and expr1->forall(v:T | expr2) as “for all nodes v of type T, if
v is contained in the set described by expr1 then v also satisfies expr2”.

– We describe the sets via their characteristic properties, e.g. for union, v ∈
A∪B iff v ∈ A∨ v ∈ B. For T.allInstances(), the characteristic function
is true for all nodes which are of type T. The idea for select (point 13 in
the definition) is to restrict the set of nodes described by expr1 by requiring
that each node v′ satisfying expr1 also satisfies expr2. The construction for
reject is analogous. The translation trS(expr1->collect(v:T | expr2),

v’:T’) (point 14) is a condition over v′ that is true iff there is a node v
such that (a) v is contained in the set described by expr1 (i.e. v satisfies

trS(expr1, v:T)) and (b) the relation between v and v′ given by expr2 is

satisfied. This is described by trS(expr2, v’:T’).
– For navigation (point 12), (a) presents the final step in a chain of navigations,

while cases (b) and (c) present the navigation to single nodes and sets of
nodes, respectively. The translations in (b) and (c) are identical, since single
nodes are treated as single-element sets.

Without loss of generality, we assume variable names to be unique in OCL ex-
pressions. This can easily be ensured by giving each variable a different name, e.g.
self.a->collect(v | v.b)->exists(v | expr) becomes self.a->collect(v
| v.b)->exists(v’ | expr).

The translation of Essential OCL constraints to nested graph constraints consists
of several parts: Invariants are translated by translation function trI . Any OCL
expression that yields a Boolean value as result is translated by trE . For expres-
sions yielding single objects, we use trN , and for expressions yielding collections
(i.e., sets) of objects, we use trS . The latter two translations take a single node
as their second parameter; this node represents the object (or set of objects)
yielded by the expression.

Definition 16 (Constraint translation). Let DSIG = (S,OP) be a data sig-
nature with S = {Integer,Real, Boolean, String}. Let M = (CLASS,ENUM,
ATT,ASSOC, associates, rsrc, rtgt,multiplicities,≺) be an object model over
DSIG with ATGI = corrtype(M) being the corresponding attributed type graph
with inheritance. Let t : Expr → T be a typing function which returns the type
of an OCL expression. Let InvariantM be the set of Essential OCL invariants
over M and GraphConditionATGI be the set of all graph constraints as defined
in Definition 10. The translation functions

– invariant translation trI : InvariantM → GraphConditionATGI,
– expression translation trE : ExprBoolean → GraphConditionATGI,
– navigation translation trN : ExprC × GraphATGI → GraphConditionATGI

with C ∈ CLASS,
– and set translation trS : ExprSet ×GraphATGI → GraphConditionATGI

are defined as follows:

31

Let expr, expr1 and expr2 be OCL expressions, u, v, v′ names of nodes (i.e.
variables), T = t(v) denote the type of v and likewise T′ = t(v’), attr1 and
attr2 be attribute names, op ∈ {<,>,≤,≥,=, <>} a comparison operator,
and role be a role of a class. Then

1. (a) trI(context C inv: expr) := ∀(self:C , trE(expr))

(b) trI(context var:C inv: expr) := ∀(var:C , trE(expr))
2. (a) trE(true) := true

(b) trE(not expr) := ¬trE(expr)
(c) trE(expr1 and expr2) := trE(expr1) ∧ trE(expr2)
(d) trE(expr1 or expr2) := trE(expr1) ∨ trE(expr2)
(e) trE(expr1 implies expr2) := ¬trE(expr1) ∨ trE(expr2)
(f) trE(if cond then expr1 else expr2) :=

((trE(cond) ∧ trE(expr1)) ∨ (¬trE(cond) ∧ trE(expr2)))
3. (a) trE(expr1->exists(v:T | expr2)) :=

∃(v:T , trS(expr1, v:T) ∧ trE(expr2))
(b) trE(expr1->forall(v:T|expr2)) :=

∀(v:T , trS(expr1, v:T)⇒ trE(expr2))
4. (a) trE(expr1->includesAll(expr2)) :=

∀(v:T , trS(expr2, v:T)⇒ trS(expr1, v:T))
(b) trE(expr1->excludesAll(expr2)) :=

∀(v:T , trS(expr2, v:T)⇒ ¬trS(expr1, v:T))
where t(expr1) = t(expr2) = Set(T).

5. trE(expr->notEmpty()) := ∃(v:T , trS(expr, v:T))

6. trE(expr->size() >= n) := ∃(v1:T · · · vn:T ,
∧n
i=1 trS(expr, vi:T))

where n is an integer constant ≥ 0, t(expr) = Set(T) and v1, . . . , vn are
fresh variables of type T.

7. (a) trE(expr1 = expr2) := ∃(v:T , trN (expr1, v:T) ∧ trN (expr2, v:T))
if t(expr1) = t(expr2) = T for some class T,

(b) trE(expr1 = expr2) := ∀(v:T , trS(expr1, v:T)⇔ trS(expr2, v:T))
if t(expr1) = t(expr2) = Set(T) for some class T.

8. trE(expr.attr1 op con) := ∃(v:T , trN (expr, v:T) ∧ ∃(
v:T

attr1 op con))

where con is a constant and t(expr) = T for some class T.
9. trE(expr1.attr1 op expr2.attr2) :=

∃(v:T , trN (expr1,
v:T

attr1 op x) ∧ trN (expr2,
v:T

attr2 = x)) ∨35

∃(v:T v’:T’ , trN (expr1,
v:T

attr1 op x) ∧ trN (expr2,
v’:t(v’)

attr2 = x
))

where t(expr1) = T, t(expr2) = T′, t(x) = t(attr1) = t(attr2) and x, v
and v’ are fresh variables.

35 The part before ∨ is omitted if clan(t(expr1)) ∩ clan(t(expr2)) = ∅, and the part
after ∨ is omitted if expr1 = expr2.

32

10. (a) trE(expr.oclIsKindOf(T)) := ∃(v:T’ ↪→ v:T , trN (expr, v:T’))
(b) trE(expr.oclIsTypeOf(T)) :=

∃(v:T’ ↪→ v:T ,
∧T ′′ 6=T
T ′′∈clan(T) ¬∃(v:T ↪→ v:T”) ∧ trN (expr, v:T’))

where T′ = t(expr) and T ∈ clan(T′).

11. trN (expr.oclAsType(T), v:T) := ∃(v:T’ ↪→ v:T , trN (expr, v:T’))
where T′ = t(expr) and T ∈ clan(T′)

12. (a) trN (v, v’:T) := ∃(v=v’:T) if v is a variable,

(b) If role has a multiplicity of 1, trN (expr.role, v:T) :=

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) if T′ 6∈ clan(T) and

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) ∨ ∃(v:T role, trN (expr, v:T)) else.

(c) If role has a multiplicity > 1, trS(expr.role, v:T) :=

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) if T′ 6∈ clan(T) and

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) ∨ ∃(v:T role, trN (expr, v:T)) else,

where v’ is a fresh variable and t(expr) = T′.

13. (a) trS(expr1->select(v:T | expr2), v’:T) :=

trS(expr1, v’:T) ∧ trE(expr2){v/v′}
(b) trS(expr1->reject(v:T | expr2), v’:T) :=

trS(expr1, v’:T) ∧ ¬trE(expr2){v/v′}
where expr2{v/v′} means replacing v in expr2 with v′.

14. (a) trS(expr1->collect(v:T | expr2), v’:T’) :=

∃(v:T , trS(expr1, v:T)∧trS(expr2, v’:T’)) if expr2 yields a set, and

(b) trS(expr1->collect(v:T | expr2), v’:T’) :=

∃(v:T , trS(expr1, v:T)∧trN (expr2, v’:T’)) if expr2 yields an object.

15. (a) trS(expr1->union(expr2), v:T) := trS(expr1, v:T)∨ trS(expr2, v:T)

(b) trS(expr1->intersect(expr2), v:T):=trS(expr1, v:T)∧trS(expr2, v:T)

(c) trS(expr1 - expr2, v:T) := trS(expr1, v:T) ∧ ¬trS(expr2, v:T)

(d) trS(expr1->symmetricDifference(expr2), v:T) :=

trS(expr1, v:T) Y trS(expr2, v:T)

16. trS(T.allInstances(), v:T) := ∃(v:T)

17. trS(Set{expr1, ..., exprN}, v:T) :=

trN (expr1, v:T) ∨ · · · ∨ trN (exprN, v:T)
where expr1, . . . , exprN are OCL expressions of type T.

Further translations of Essential OCL constraints can be derived from equiv-
alences of OCL expressions. Most of these equivalences follow from basic set
theory and logic axioms, cf. Richters [12], Tables 4.4 and 4.5 and page 73.

Definition 17 (further constraint translation).

1. trE(expr1->includes(expr2)) := trE(expr1->includesAll(Set{expr2}))
trE(expr1->excludes(expr2)) := trE(expr1->excludesAll(Set{expr2}))

2. trE(expr1->including(expr2)) := trE(expr1->union(Set{expr2}))
trE(expr1->excluding(expr2)) := trE(expr1 - Set{expr2})

33

3. trE(expr1 <> expr2) := trE(not expr1 = expr2)

4. trE(expr1->isEmpty()) := trE(not expr1->notEmpty())

5. trE(expr->size() > n) := trE(expr->size() >= n+1)
trE(expr->size() = n) :=

trE(expr->size() >= n and not expr->size() >= n+1)
trE(expr->size() <= n) := trE(not expr->size() > n)
trE(expr->size() < n) := trE(not expr->size() >= n)
trE(expr->size() <> n) := trE(not expr->size() = n)

6. trN (expr1->any(v|expr2), v:T) := trS(expr1->select(v|expr2), v:T)
trE(expr1->one(v|expr2)) := trE(expr1->select(v|expr2)->size()=1)

where expr, expr1 and expr2 are OCL expressions and n is an integer constant.

4.3 Examples

In the following examples, an index above the = sign refers to the translation
rule used; an index at the equivalence sign ≡ refers to the used equivalence rule
of Proposition 4.

Example 5. The name of a transition is not empty.

trI(context Transition inv: self.name <> ’’) =1

∀(self:Tr , trE(self.name <> ’’)) =8

∀(self:Tr ,∃(self:Tr , ∃(
self:Tr

name <> ”))) =E1

∀(self:Tr ,∃(
self:Tr

name <> ”))

Example 6. There is no isolated transition.

trI(context Transition inv: self.preArc->notEmpty() or

self.postArc->notEmpty()) =1

∀(self:TR , trE(self.preArc->notEmpty() or self.postArc->notEmpty())) =2

∀(self:TR , trE(self.preArc->notEmpty()) ∨ trE(self.postArc->notEmpty())) =5

∀(self:TR , ∃(v:PTArc , trS(self.preArc, v:PTArc))∨

∃(w:TPArc , trS(self.postArc, w:TPArc))) =12

∀(self:TR , ∃(v:PTArc ,∃(self:TR v:PTArc
preArc

))∨

∃(w:TPArc , ∃(self:TR w:TPArc
postArc

))) ≡E1b

∀(self:TR , ∃(self:TR v:PTArc
preArc

) ∨ ∃(self:TR w:TPArc
postArc

))

34

Alternatively:

trI(context Petrinet inv: self.transition->forAll(t:Transition |

t.preArc->notEmpty() or t.postArc->notEmpty())) =1

∀(self:PN , trE(self.transition->forAll(t:Transition|

t.preArc->notEmpty() or t.postArc->notEmpty()))) =3

∀(self:PN , ∀(t:Tr , trS(self.transition, t:Tr)⇒

trE(t.preArc->notEmpty() or t.postArc->notEmpty()))) =17

∀(self:PN , ∀(t:Tr , ∃(u:PN , trN (self, u:PN)) ∧ ∃(u:Pn t:Trtr
)⇒

trE(t.preArc->notEmpty() or t.postArc->notEmpty()))) =12

∀(self:PN , ∀(t:Tr , ∃(u:PN ,∃(u=self:PN) ∧ ∃(u:Pn t:Trtr
))⇒

trE(t.preArc->notEmpty() or t.postArc->notEmpty())) =5

∀(self:PN , ∀(t:Tr , ∃(u:PN ,∃(u=self:PN) ∧ ∃(u:Pn t:Trtr
))⇒

∃(v1:PTArc , trN (t.preArc, v1:PTArc))∨

∃(v2:TPArc , trN (t.postArc, v2:TPArc)))) =12

∀(self:PN , ∀(t:Tr , ∃(u:PN ,∃(u=self:PN) ∧ ∃(u:Pn t:Trtr
))⇒

∃(v1:PTArc , ∃(w1:Tr , trN (t, w1:Tr) ∧ ∃(w1:Tr v1:PTArc
preArc

)))∨

∃(v2:TPArc , ∃(w2:Tr , trN (t, w2:Tr) ∧ ∃(w2:Tr v2:TPArc
postArc

))))) =12

∀(self:PN , ∀(t:Tr , ∃(u:PN ,∃(u=self:PN) ∧ ∃(u:Pn t:Trtr
))⇒

∃(v1:PTArc , ∃(w1:Tr , ∃(w1=t:Tr) ∧ ∃(w1:Tr v1:PTArc
preArc

)))∨

∃(v2:TPArc , ∃(w2:Tr , ∃(w2=t:Tr) ∧ ∃(w2:Tr v2:TPArc
postArc

))))) ≡E3

∀(self:PN t:Trtr
, ∃(t:Tr v1:PTArc

preArc
) ∨ ∃(t:Tr v2:TPArc

postArc
))

Example 7. There is no isolated place.

trI(context Place inv: self.preArc->notEmpty() or self.postArc->notEmpty()) =1

∀(self:Pl , trE(self.preArc->notEmpty() or self.postArc->notEmpty()) =2

∀(self:Pl , trE(self.preArc->notEmpty())∨

trE(self.postArc->notEmpty())) =5

∀(self:Pl , ∃(v:TPArc , trS(self.preArc, v:TPArc))∨

∃(w:PTArc , trS(self.postArc, w:PTArc))) =12

∀(self:Pl , ∃(v:TPArc ,∃(self:Pl v:TPArc
preArc

)) ∨ ∃(w:PTArc ,∃(self:Pl w:PTArc
postArc

))) ≡E1b

∀(self:Pl , ∃(self:Pl v:TPArc
preArc

) ∨ ∃(self:Pl w:PTArc
postArc

))

35

Example 8. Each two places of a Petri net have different names.

∀(self:PN , trE(self.place->forAll(p1:Place|self.place->forAll(p2:Place|

p1<>p2 implies p1.name<>p2.name)))) =2×3

∀(self:PN , ∀(p1:Pl , trS(self.place, p1:Pl)⇒ (trS(self.place, p2:Pl)⇒

trE(p1<>p2 implies p1.name<>p2.name)))) =2×12

∀(self:PN ,∀(p1:Pl , ∃(self:PN p1:Plplace
)⇒ (∃(self:PN p2:Plplace

)⇒

trE(p1<>p2 implies p1.name<>p2.name)))) =2,Def. 17

∀(self:PN , ∀(p1:Pl , ∃(self:PN p1:Plplace
)⇒ (∃(self:PN p2:Plplace

)⇒

trE(p1<>p2)⇒ trE(p1.name<>p2.name)))) =7,9

∀(self:PN , ∀(p1:Pl , ∃(self:PN p1:Plplace
)⇒ (∃(self:PN p2:Plplace

)⇒

¬∃(p:Pl , ∃(p=p1:Pl) ∧ ∃(p=p2:Pl))⇒ ∃(
p1:Pl

name<>x

p2:Pl

name=x)))) ≡E1a

∀(self:PN , ∀(p1:Pl , ∃(self:PN p1:Plplace
)⇒ (∃(self:PN p2:Plplace

)⇒

¬∃(p=p1=p2:Pl)⇒ ∃(
p1:Pl

name<>x

p2:Pl

name=x)))) ≡A⇒B≡¬A∨B

∀(self:PN , ∀(p1:Pl ,¬∃(self:PN p1:Plplace
) ∨ ¬∃(self:PN p2:Plplace

)∨

∃(p=p1=p2:Pl) ∨ ∃(
p1:Pl

name<>x

p2:Pl

name=x))) ≡DeMorgan, E1c

∀(self:PN , ∀(p1:Pl ,¬(∃(self:PN
p1:Plplace

p2:Plplace
) ∧ ¬∃(

p1:Pl

name<>x

p2:Pl

name=x)))) ≡DeMorgan

∀(self:PN , ∀(p1:Pl ,¬∃(self:PN
p1:Plplace

p2:Plplace
) ∨ ∃(

p1:Pl

name<>x

p2:Pl

name=x))) ≡A⇒B≡¬A∨B

∀(self:PN , ∃(self:PN
p1:Plplace

p2:Plplace
)⇒ ∃(

p1:Pl

name<>x

p2:Pl

name=x))

Example 9. There is at least one place in a Petri net having at least one token.

trI(context PetriNet inv: self.place->exists(p:Place|p.token->notEmpty())) =1

∀(self:PN , trE(self.place->exists(p:Place|p.token->notEmpty()))) =3

∀(self:PN , ∃(p:Pl , trS(self.place, p:Pl) ∧ trE(p.token->notEmpty()))) =5

∀(self:PN , ∃(p:Pl , trS(self.place, p:Pl) ∧ ∃(t:Tk , trS(p.token, t:Tk)))) =12

∀(self:PN , ∃(p:Pl ,∃(self:PN p:Plplace
) ∧ ∃(t:Tk , ∃(p:Pl t:Tktoken

)))) ≡E1,E2

∀(self:PN , ∃(self:PN p:Pl t:Tk
place token

))

36

Alternatively:

trI(context PetriNet inv:

self.place->select(p:Place|p.token->notEmpty())->notEmpty()) =1

∀(self:PN , trE(self.place->select(p:Place|p.token->notEmpty())->notEmpty())) =5

∀(self:PN , ∃(p:Pl , trS(self.place->select(p:Place|p.token->notEmpty()), p:Pl))) =13

∀(self:PN , ∃(p:Pl , trS(self.place, p:Pl) ∧ trE(p.token->notEmpty()))) =5

∀(self:PN , ∃(p:Pl , trS(self.place, p:Pl) ∧ ∃(t:Tk , trS(p.token, t:Tk)))) =12

∀(self:PN , ∃(p:Pl ,∃(self:PN p:Plplace
) ∧ ∃(t:Tk , ∃(p:Pl t:Tktoken

)))) ≡E1,E2

∀(self:PN , ∃(self:PN p:Pl t:Tk
place token

))

Alternatively:

trI(context PetriNet inv: self.place->collect(p:Place|p.token)->notEmpty()) =1

∀(self:PN , trE(self.place->collect(p:Place|p.token)->notEmpty())) =5

∀(self:PN , ∃(t:Tk , trS(self.place->collect(p:Place|p.token), t:Tk))) =14

∀(self:PN , ∃(t:Tk , trS(self.place, p:Pl) ∧ trS(p.token, t:Tk))) =12

∀(self:PN , ∃(t:Tk , ∃(self:PN p:Plplace
) ∧ ∃(p:Pl t:Tktoken

))) ≡E1,E2

∀(self:PN , ∃(self:PN p:Pl t:Tk
place token

))

Alternatively 36:

trI(context PetriNet inv: Token.allInstances()->notEmpty()) =1

∀(self:PN , trE(Token.allInstances()->notEmpty())) =5

∀(self:PN , ∃(v:Tk , trS(Token.allInstances(), v:Tk))) =16

∀(self:PN , ∃(v:Tk ,∃(v:Tk))) ≡E1

∀(self:PN , ∃(v:Tk))

36 The resulting nested graph constraint slightly differs from those presented above.
Please see footnote 3 on page 5.

37

Example 10. The weight of an arc is positive.

trI(context Arc inv: self.weight >= 1) =1

∀(self:Arc , trE(self.weight >= 1)) =8

∀(self:Arc ,∃(v:Arc , trN (self, v:Arc) ∧ ∃(
v:Arc

weight ≥ 1))) =12

∀(self:Arc ,∃(v:Arc , ∃(v=self:Arc) ∧ ∃(
v:Arc

weight ≥ 1))) ≡E3

∀(self:Arc ,∃(
self:Arc

weight ≥ 1))

Example 11. Each Petrinet has at least two places.

trI(context Petrinet inv:self.place->size() >= 2) =1

∀(self:PN , trE(self.place->size() >= 2)) =6

∀(self:PN , ∃(v1:Pl v2:Pl , trS(self.place, v1:Pl) ∧ trS(self.place, v2:Pl))) =12a,12c

∀(self:PN ,∃(v1:Pl v2:Pl , ∃(self:PN v1:Pl
place

) ∧ ∃(self:PN v2:Pl
place

))) ≡E2

∀(self:PN ,∃(self:PN
v1:Plplace

v2:Plplace

))

Example 12. There is at least one transition that can be fired, i.e., all PTArcs
targeting this transition must have a weight less or equal to the token number
of their source places.

The translations of Core OCL constraints in [8] (in this paper denoted tr′) and
the translation tr of Essential OCL constraints are closely related, as stated by
the following proposition.

Proposition 1 (Translations of Core and Essential OCL). For every Core
OCL constraint expr, tr′(expr) ≡ tr(expr).

Proof. The proof is done according to the items in [8, Definition 12] and uses the
definition of tr′, the equivalences of Fact 4, and the definition of tr. Moreover,
the proof for item (11–12) makes use of an induction over the structure of Core
OCL constraints.

In more detail: Items 1 and from tr′ correspond to item 1 from tr, items 4–8
correspond to 2, 16 and 17 from tr′ to 9 and 8 in tr, respectively. The other
items are proved as follows; item numbers are taken from Definition 12 in [8].

(3) This just splits up handling of tr′E and needs no correspondence in trE .

(9,10) Note that in items 9,10 from tr′, navExpr is always of the form v.role

and v and v.role refer to distinct nodes.

38

tr′E(v.role->notEmpty()) (Def. tr′E9)
∃(tr′N (v.role)) = (Def. tr′N18)

∃(∅ → v:T v’:T’role
) ≡ (E1b)

∃(∅ → v’:T’ ,∃(v:T v’:T’role
)) = (Def. trN12)

∃(∅ → v’:T’ , trN (v.role, v:T)) = (Def. trE5)
trE(v.role->notEmpty())
The proof for isEmpty is analogous.

(11,12) This is proven by induction over the structure of OCL constraints.
Induction base: tr′E(true) = true = trE(true).
Hypothesis: For sub-constraints expr, tr′E(expr) = trE(expr).
tr′E(u.role->exists(v:T| expr)) = (Def. tr′E11)

∃(tr′N (u.role) w v:T , tr′E(expr)) = (Def. tr′N18)

∃(u:T’ v:Trole w v:T , tr′E(expr)) ≡ ([8, Def. w])

Shiftw(v:T ↪→ u:T’ v:Trole
,

∃(u:T’ v:Trole w v:T , tr′E(expr))) ≡ ([8, Shiftw])

∃(u:T’ v:Trole
, tr′E(expr)) ≡ (Ind. hyp.)

∃(u:T’ v:Trole
, trE(expr)) ≡ (E1b)

∃(u:T’ v:T ,∃(u:T’ v:Trole
, trE(expr))) ≡ (E2b,E1b)

∃(u:T’ v:T ,∃(u:T’ v:Trole
) ∧ trE(expr)) = (Def. trS12)

∃(u:T v:T , trS(u.role, v:T) ∧ trE(expr)) = (Def. trE3)
trE(u.role->exists(v:T| expr))
The proof for forall proceeds analogously.

(13)
tr′E(v = u) = (Def. tr′E13a)

∃(v:T u:T → v=u:T) ≡ ([8, Footnote 21])

Shift(v:T u:T → v=u:T ,∃(v:T u:T → v=u:T)) (Def. Shift)

∃(v=u:T) (E1a)

∃(v:T ,∃(v:T ,∃(v:T) ∧ ∃(u:T ,∃(u=v:T)))) (Def. trN12)

∃(v:T , trN (v, v:T) ∧ trN (u, v:T)) ≡ (Def. trE7)
trE(v = u).
The proof for u <> v proceeds analogously.

(14,15) Let T ′ = t(r1) = t(r2) and assume r1 6= r2 and v 6= v.r1, v.r236.
tr′E(v.r1 = v.r2) = (Def. tr′E14)

∃(v:T u:T’
r1

r2) ≡ (E2a)

∃(u:T’ ,∃(v:T u:T’r1
) ∧ ∃(v:T u:T’r2

)) = (Def. trS12)

∃(u:T ,∃(trS(v.r1, u:T’)) ∧ ∃(trS(v.r2, u:T’))) = (Def. trE7)
trE(v.r1 = v.r2).

(18) Since tr′N yields graphs and trN yields conditions, there can be no direct
correspondence between the two. However, tr′N is used in the construction of

36 This is a silent assumption in [8]; indeed, tr′N does not work for models with direct
loops in the metamodel.

39

tr′E in cases 9 to 12. For these cases, we showed the correspondence. These are
all occurrences of tr′N , so no further proof is necessary here.

(19) Variables v of type T are translated ad-hoc by tr into nodes v:T , which
corresponds directly to tr′V . 2

4.4 Limitations

Since we focus on the use of OCL within DSML definitions, we restrict our
translation to invariants. Therefore, we do not consider expression oclIsNew

that is mainly used within post-condition specifications of operations.

Because graph-based approaches rely on (type and object) graphs, they support
flat object sets as the only form of OCL collections to be translated. Conse-
quently, we do not translate expressions related to further collection types (e.g.,
Sequence) such as sortedBy and isUnique as well as expressions related to
hierarchical sets (e.g., flatten) and sets of primitive values (e.g., sum).

Since graph constraints are restricted to a first-order, two-valued logic, our OCL
translation is straightened to corresponding OCL features, focusing on the equiv-
alence of constraints to true in our proofs. Therefore, we do not consider types
void and invalid as well as expressions like oclIsUndefined and iterate

which is not first order.

Finally, there are a few additional OCL features which have not been covered by
our OCL translation but will be in future work. These are, e.g., non-recursive
operation calls, as used in model queries, and LetExpressions which may be
iteratively replaced by their bodies with potential variable replacement.

4.5 Correctness

To show that the translation of Essential OCL invariants is correct, we consider
their semantics and the semantics of graph constraints. If an invariant holds for a
system state, the corresponding graph constraint is fulfilled by the corresponding
graph.

Theorem 1 (Correct Translation of Essential OCL invariants). Given
an object model M and its corresponding attributed type graph ATGI =
corrtype(M), for all Essential OCL invariants inv ∈ Dom(trI) and all environ-
ments (σ, β) ∈ Env,

I[[inv]](σ, β) = true iff G = corrstate(σ) |= trI(inv).

Proof. We prove, by induction over the structure of Essential OCL invariants,
the more general statement
(1) I[[expr]](σ, β) = true ⇔ p |= trE(expr),

40

(2) I[[expr]](σ, β) = v ⇔ p⊕ idv |= trN (expr, v:T)37,

(3) I[[expr]](σ, β) = {v1, . . . , vn} ⇔ ∀v ∈ {v1, . . . , vn}.p⊕ idv |= trS(expr, v:T).
Base Case. I[[context C inv: true]](σ, β) = true = ∀v ∈ σClass(C).true =

∀(v:C , true) = trI(context C inv: true).
Hypothesis. For all subexpressions expr, objects v, v1, . . . , vn and morphisms

p : { v:T ∈ cClass(β(v))|v ∈ Dom(β)} → corrState(σ), let statements (1), (2)
and (3) be true.

Induction Step.

(1) See the corresponding proof in the extended version of [8]. Case context C

inv: expr follows as a special case of the above with var = self.

(2) See the corresponding proof in the extended version of [8].

(3) Let t(expr1) = T.
I[[expr1->exists(v:T| expr2)]](σ, β) (Def. 5)
⇔ I[[expr1]](σ, β) = {v1, . . . , vn} ∧

∨
1≤i≤n I[[expr2]](σ, β{v/vi}) (set axioms)

⇔ I[[expr1]](σ, β) = {v1, . . . , vn}∧
∃vi ∈ {v1, . . . , vn}.I[[expr2]](σ, β{v/vi}) (set axioms)

⇔ ∃v ∈ σClass(T).I[[expr1]](σ, β) ∧ I[[expr2]](σ, β) (Ind. hyp.)

⇔ ∃(v:T ∈ cClass(σClass(T)).p⊕ idv |= trS(expr1, v:T)
∧p⊕ idv |= trE(expr2)) (Def. |=)

⇔ p |= ∃(v:T , trS(expr1, v:T) ∧ trE(expr2)) (Def. 16.3)
⇔ p |= trE(expr1->exists(v:T| expr2))
The proof of forall is analoguous.

(4) Let t(expr1) = t(expr2) = Set(T).
I[[expr1->includesAll(expr2)]](σ, β) (Def. 5)
⇔ I[[expr2]](σ, β) ⊆ I[[expr1]](σ, β) (set axioms)
⇔ ∀v ∈ σ(T).v ∈ I[[expr2]](σ, β) implies v ∈ I[[expr1]](σ, β) (Ind. hyp.)

⇔ ∀ v:T ∈ cClass(σ(T)).p⊕ idv |= trS(expr2, v:T)

implies p⊕ idv |= trS(expr1, v:T) (Def. |=)

⇔ p |= ∀(v:T , trS(expr2, v:T) implies trS(expr1, v:T)) (Def. 16.4)
⇔ p |= trE(expr1->includesAll(expr2))
The proof of excludesall is analogous.

(5)
I[[expr->notEmpty()]](σ, β) (Def. 5)
⇔ I[[expr]](σ, β) 6= ∅ (set axioms)
⇔ ∃v ∈ σClass(T).v ∈ I[[expr]](σ, β) (Ind. hyp.)

⇔ ∃ v:T ∈ cClass(σClass(T)).p⊕ idv |= trS(expr, v:T) (Def. |=)

⇔ p |= ∃(v:T , trS(expr, v:T)) (Def. 16.5)
⇔ p |= trE(expr->notEmpty())

37 For morphisms p : P → G, let function composition p⊕ idv be the morphism p′ : P ⊕
v:T → G, with p′(v) = p(v) if v ∈ Dom(p) and p′(v) = v otherwise. Note that
P = ∅ for constraints.

41

(6)
I[[expr->size() >= n]](σ, β) (Def. 5)
⇔ |{v | I[[expr]](σ, β)}| >= n (set axioms)
⇔ ∃v1, . . . , vn ∈ σ(T).

∧n
i,j=1,i6=j(vi 6= vj)

∧
∧n
i=1(vi ∈ I[[expr]](σ, β)) (Ind. hyp.)

⇔ ∃ v1:T · · · vn:T∈cClass(σ(T)).
∧n
i=1 p⊕ idvi |=trS(expr, vi:T) (Def. |=)

⇔ p |= ∃(v1:T · · · vn:T ,
∧n
i=1 trS(expr, vi:T)) (Def. 16.6)

⇔ p |= trE(expr->size() >= n)

(7a) For t(expr1) = t(expr2) = T for some class T,
I[[expr1 = expr2]](σ, β) (Def. 5)
⇔ I[[expr1]](σ, β) = I[[expr2]](σ, β) (use variable)
⇔ ∃v ∈ σClass(T).v = I[[expr1]](σ, β) ∧ v = I[[expr2]](σ, β) (Ind. hyp.)

⇔ ∃ v:T ∈ cClass(σClass(T)).p⊕ idv |= trN (expr1, v:T)

∧p⊕ idv |= trN (expr2, v:T) (Def. |=)

⇔ p |= ∃(v:T , trN (expr1, v:T) ∧ trN (expr2, v:T)) (Def. 16.7a)
⇔ p |= trE(expr1 = expr2)

(7b) For t(expr1) = t(expr2) = Set(T) for some class T,
I[[expr1 = expr2]](σ, β) (Def. 5)
⇔ I[[expr1]](σ, β) = I[[expr2]](σ, β) (set axioms)
⇔ ∀v ∈ σClass(T).v ∈ I[[expr1]](σ, β) iff v ∈ I[[expr2]](σ, β) (Ind. hyp.)

⇔ ∀ v:T ∈ cClass(σ(T)).p⊕ idv |= trS(expr1, v:T) iff

p⊕ idv |= trS(expr2, v:T) (Def. |=)

⇔ p |= ∀(v:T , trS(expr1, v:T) iff trS(expr2, v:T)) (Def. 16.7b)
⇔ p |= trE(expr1 = expr2)

(8) See the corresponding proof in the extended version of [8].

42

(9) Let T = t(expr1),T′ = t(expr2) and att(v:T, att) = σAtt(att)(I[[v:T]](σ, β)),
Let pv = p⊕ idv and pv′ = p⊕ idv′ .
I[[ex1.a1 op ex2.a2]](σ, β) (Def. 5)
⇔ att(ex1, a1) op att(ex2, a2) (Def. 5)
⇔ ∃v, v′.v = I[[ex1]](σ, β) ∧ v′ = I[[ex2]](σ, β)

∧att(v, a1) op att(v’, a2) (Ind. hyp.)

⇔ ∃(v:T , v’:T’ .pv |= (trN (ex1, v:T) ∧ ∃(
v:T

a1 = x)))

∧pv′ |= trN (ex2, v’:T’) ∧ ∃(
v’:T’

a2 = x) (Equiv. 2)

⇔ ∃(v=v’:T .pv |= trN (ex1,
v=v’:T
a1 op x) ∧ pv |= trN (ex2,

v=v’:T
a2 = x))

∨∃(v:T v’:T’ , pv |= trN (ex1,
v:T

a1 op x)∧ pv′ |= trN (ex2,
v’:T’

a2 = x)) (Def. |=)

⇔ p |= ∃(v:T , trN (ex1,
v:T

a1 op x) ∧ trN (ex2,
v:T

a2 = x))

∨∃(v:T v’:T’ , trN (ex1,
v:T

a1 op x) ∧ trN (ex2,
v’:T’

a2 = x)) (Def. 16.9)

⇔ p |= trE(ex1.a1 op ex2.a2)

(10a) Let t(expr) = T′ and T ∈ clan(T′).
I[[expr.oclIsTypeOf(T)]](σ, β) (Def. 5)

⇔ I[[expr]](σ, β) ∈ (I(T)−
⋃T′′ 6=T

T′′≤MT I(T′′)) (set axioms)

⇔ ∃v = I[[expr]](σ, β).v ∈ I(T) ∧
∧T′′ 6=T

T′′≤MT .v 6∈ I(T′′) (Def. 3, 2)

⇔ ∃v = I[[expr]](σ, β).v ∈ σ≺Class(T) ∧
∧T′′ 6=T

T′′≤MT .v 6∈ σ
≺
Class(T

′′) (Ind. hyp.)

⇔ ∃(v:T’ .∃(v:T’ → v:T) ∧
∧T′′ 6=T

T′′≤MT .¬∃(v:T’ → v:T”)) (Def. |=)

⇔ p |= ∃(v:T’ → v:T ,
∧T′′ 6=T

T′′∈clan(T) ¬∃(v:T → v:T”)

∧trN (expr, v:T’)) (Def. 16.10)
⇔ p |= trE(expr.oclIsTypeOf(T))

(10b) The proof is analogous to the one for ocsIsTypeOf (without the
⋃

-part):
Let t(expr) = T′.
I[[expr.oclIsKindOf(T)]](σ, β) (Def. 5)
⇔ I[[expr]](σ, β) ∈ I(T) (set axioms)
⇔ ∃v = I[[expr]](σ, β).v ∈ I(T) (Def. 3, 2)
⇔ ∃v = I[[expr]](σ, β).v ∈ σClass(T) (Ind. hyp.)

⇔ ∃(v:T’ ,∃(v:T’ → v:T)) (Def. |=)

⇔ ∃(v:T’ → v:T , trN (expr, v:T’)) (Def. 16.10)
⇔ trE(expr.oclIsKindOf(T))

43

(11) Let t(expr) = T′.
v = I[[expr.oclAsType(T)]](σ, β) (Def. 5)
⇔ v = I[[expr]](σ, β) ∧ I[[expr]](σ, β) ∈ I(T) (Def. 3, 2)
⇔ v = I[[expr]](σ, β) ∧ v ∈ σClass(T) (Ind. hyp.)

⇔ ∃ v:T’ ∈ cClass(σ(T)). ∧ p⊕ idv |= trN (expr, v:T’) ∧ ∃(v:T’ →
v:T)

(Def. |=)

⇔ p |= ∃(v:T’ → v:T , trN (expr, v:T’)) (Def 16.11)

⇔ p |= trN (expr.oclAsType(T), v:T’)

(12a) Let t(v) = t(v′) = T.
v′ = I[[v]](σ, β) (Def. 5)
⇔ ∃v′ ∈ σ(T).β(v) = v′ (cClass)

⇔ ∃ v=v’:T ∈ cClass(σ(T)) (Def. |=)

⇔ p |= ∃(v=v’:T) (Def. trN)

⇔ p |= trN (v, v’:T)

(12b) First, assume T 6∈ clan(T′) and let t(expr) = T′, t(expr.role) = T.
v = I[[expr.role]](σ, β) (Def. 5)
⇔ (I[[expr]](σ, β), v) ∈ σAssoc(role) (cAssoc)
⇔ ∃v′ = I[[expr]](σ, β) ∧ t(v′) = T′

∧ v’:T’ v:Trole ∈ cAssoc(σAssoc(role)) (Ind. hyp.)

⇔ ∃(v’:T’ ∈ cClass(σ(T)).p⊕ idv′ |= trN (expr, v’:T’)∧
p⊕ idv′ ⊕ idv |= v’:T’ v:Trole

) (Def. |=)

⇔ p |= ∃(v’:T’ v:Trole
, trN (expr, v’:T’)) (Def. 16.12)

⇔ p |= trN (expr.role, v’:T)
Now assume T ∈ clan(T′) and let t(expr) = T′, t(expr.role) = T.
v = I[[expr.role]](σ, β) (Def. 5)
⇔ (I[[expr]](σ, β), v) ∈ σAssoc(role) (cAssoc)

⇔ ∃v′ = I[[expr]](σ, β). v’:T’ v:Trole ∈ cAssoc(σAssoc(role))

∨ v=v’:T’ role (Ind. hyp.)

⇔ ∃(v’:T’ .p⊕ idv′ |= trN (expr, v’:T’)∧
(p⊕ idv′ ⊕ idv |= v’:T’ v:Trole ∨ v=v’:T’ role)) (Def. |=)

⇔ p |= ∃(v’:T’ v:Trole
, trN (expr, v’:T’))

∨∃(v:T role, trN (expr, v:T)) (Def. 16.12)

⇔ p |= trN (expr.role, v’:T)
The proof of the trS cases is analogous to the trN cases.

(13) Let t(expr1) = Set(T).
v ∈ I[[expr1->select(v:T| expr2)]](σ, β) (Def. 5)
⇔ v ∈ {v | v ∈ I[[expr1]](σ, β)} ∧ I[[expr2]](σ, β)} (set axioms)
⇔ ∃v ∈ σ(T).v ∈ I[[expr1]](σ, β) ∧ I[[expr2]](σ, β) (Ind. hyp.)

⇔ p⊕ idv |= trS(expr1, v:T) ∧ p⊕ idv |= trE(expr2) (Def. 16.13)

⇔ p |= trS(expr1->select(v:T| expr2), v:T)
The proof for reject is analogous.

44

(14) Let t(expr1) = Set(T).
v ∈ I[[expr1->collect(v:T| expr2)]](σ, β) (Def. 5)
⇔ v ∈ {I[[expr2]](σ, β{v/v′})|v′ ∈ I[[expr1]](σ, β)} (set axioms)
⇔ ∃v′ ∈ I[[expr1]](σ, β).v ∈ I[[expr]](σ, β{v/v′}) (Ind. hyp.)

⇔ ∃(v:T , v’:T’ .p⊕ idv′ |= trS(expr1, v’:T’)

∧p⊕ idv |= trS(expr2, v:T)) (Def. |=)

⇔ ∃(v:T , p |= ∃(v’:T’ , trS(expr1, v’:T’)

∧p⊕ idv ⊕ idv′ |= trS(expr2, v:T))) (Def. |=)

⇔ p |= ∃(v:T , trS(expr1, v:T) ∧ trS(expr2, v’:T’)) (Def. 16.14)

⇔ p |= trS(expr1->collect(v:T| expr2), v’:T’)
The proof for expr2 yielding an object is analogous.

(15) Let t(expr1) = Set(T).
v ∈ I[[expr1->union(expr2)]](σ, β) (Def. 5)
⇔ v ∈ {v′ | v′ ∈ I[[expr1]](σ, β)} ∪ {v′ | v′ ∈ I[[expr2]](σ, β)} (set axioms)
⇔ v ∈ I[[expr1]](σ, β) ∨ v ∈ I[[expr2]](σ, β) (Ind. hyp.)

⇔ p⊕ idv |= trS(expr1, v:T) ∨ p⊕ idv |= trS(expr2, v:T) (Def. |=)

⇔ p |= trS(expr1, v:T) ∨ trS(expr2, v:T) (Def. 16.15)

⇔ p |= trS(expr1->union(expr2), v:T)
The proofs for intersect, - and symmetricDifference are analogous.

(16)
v ∈ I[[T.allInstances]](σ, β) = σClass(T) (Def. 5)
⇔ v ∈ σClass(T) (corrClass)
⇔ t(v) = T (Def. |=)

⇔ p |= ∃(v:T) (Def. trS)

⇔ p |= trS(T.allInstances(), v:T’)

(17) Let t(expr1) = . . . = t(exprN) = T.
v ∈ I[[Set{expr1,...,exprN}]](σ, β) (Def. 5)
⇔ v ∈ {I[[expr1]](σ, β), . . . , I[[exprN]](σ, β)} (set axioms)
⇔ v = I[[expr1]](σ, β) ∨ · · · ∨ v = I[[exprN]](σ, β) (Ind. hyp.)

⇔ p⊕ idv |= trN (expr1, v:T) ∨ · · · ∨ p⊕ idv |= trN (exprN, v:T) (Def. |=)

⇔ p |= trN (expr1, v:T) ∨ · · · ∨ trN (exprN, v:T) (Def. trS)

⇔ p |= trS(Set{expr1, ..., exprN}, v:T)
This completes the induction proof. We obtain Theorem 1 because, for OCL
expression inv = context C inv: expr and morphism p : ∅ → G, G |= trI(inv)

iff p |= ∀(self:C , trE(expr)). 2

5 From Essential OCL Invariants to Application
Conditions

After having translated Essential OCL invariants to graph constraints, we con-
nect this new result with the existing theory on graph constraints [9,27]. A main
result shows how nested graph constraints can be translated to right, and there-

45

after, to left application conditions of transformation rules. In the following, we
illustrate at an example how a Essential OCL invariant is translated to a left
application condition.

We recall the definition of graph transformation with injective rules, left appli-
cation conditions, and injective matches.

Definition 18 (rules and transformations). A rule % = 〈p, acL〉 consists of
a plain rule p = 〈L ← K → R〉 with injective morphisms K → L and K → R,
and an application condition acL over L. A direct transformation from a graph
G to a graph H via the rule % consists of two pushouts (1) and (2) as below
where morphism g is injective and g |= acL. We write G⇒%,g,h H or G⇒%,g H
if there exists such a direct transformation.

L K R

DG H

g d h(1) (2)

acL

=|
The first result says that conditions can be shifted over injective morphisms.

Lemma 1 (shift of conditions over injective morphisms [24] 38). There is
a Shift′ construction such that, for each condition c over P and for each injective
morphism b : P → P ′, Shift′ transforms c via b into a condition Shift′(b, c) over
P ′ such that, for each injective morphism n : P ′ → H, n ◦ b |= c ⇐⇒ n |=
Shift′(b, c).

Construction. The Shift′ construction is inductively defined as follows:

P

C

P ′

C ′

a a′(1)

b

b′

c

Shift′(b, trueP) = trueP ′ .
Shift′(b,∃(a, c)) =

∨
(a′,b′)∈F ′ ∃(a′,Shift′(b′, c)) where

F ′ = {(a′, b′) | (a′, b′) jointly surjective, a′, b′ inj., (1) commutes}
Shift′(b,¬c) = ¬Shift′(b, c), Shift′(b,∧i∈Jci) = ∧i∈JShift′(b, ci).

In contrast to the Shift in [24], in the construction Shift′, both morphisms a′

and b′ have to be injective.

Proof. By inspection of the proof of Lemma 2 in [24]. The Only-if case follows,
by M is closed under decomposition, q, n,m ∈ M implies a′, b′ ∈ M. Thus,
(a′, b′) ∈ F ′. The If case follows because F ′ ⊆ F . 2

38 Lemma 1 is an injective version of Lemma 2 in [24]: In [24], arbitrary conditions with
arbitrary matching (n : P ′ → H arbitrary) are shifted over arbitrary morphisms. In
Lemma 1, injective conditions with injective matching (n : P ′ → H injective) are
shifted over injective morphisms. It hold in every category with E ′-M pair factor-
izations (see e.g. [15]), in particular in the category ATGI with inclusions.

46

Example 13. Consider the graph constraint in Example 7 corresponding to the
OCL constraint 3 saying that “there is no isolated place”. Shift′ of this constraint
over the morphism ∅ → :PN :Pl :Tr yields the right application condition

∀(:PN p:Pl :Tr → :PN p:Pl :Tr p’:Pl ,

∃(:PN p:Pl :Tr p’:Pl :TPArc
preArc

) ∨ ∃(:PN p:Pl :Tr p’:Pl :PTArc
postArc

)))

∧ ∀(:PN p:Pl :Tr → :PN p=p’:Pl :Tr ,

∃(:PN p=p’:Pl :TPArc
preArc

:Tr) ∨ ∃(:PN p=p’:Pl :PTArc
postArc

:Tr))

≡∃(:PN p:Pl :Tr → :PN p:Pl :TPArc
preArc

:Tr)

∨ ∃(:PN p:Pl :Tr → :PN p:Pl :PTArc
postArc

:Tr)

stating that “the Place object is connected to a PTArc or TPArc”. The Shift′

construction proceeds as shown below. Quantors are written next to the mor-
phism arrows. The original constraint can be seen on the left side, and the new
condition is in the middle and right part.

∅ :PN p:Pl :Tr

:PN p=p’:Pl :Trp’:Pl

p’:Pl :TPArc
preArc

p’:Pl :PTArc
postArc

:PN :Tr

p=p’:Pl :TPArc
preArc

:PN :Tr

p=p’:Pl :PTArc
postArc

:PN p’:Pl p:Pl :Tr

:PN p:Pl :Tr

p’:Pl :TPArc
preArc

:PN p:Pl :Tr

p’:Pl :PTArc
postArc

∀

∃

∃

∀

∃

∃

∀

∃

∃

∧

∨∨ ∨

Fig. 4. Illustration of the Shift′-construction

The second result is that conditions can be shifted over rules.

Lemma 2 (shift of conditions over rules [9]). There is a construction Left
such that, for each rule p = 〈L ← K → R〉 and each condition ac over R, Left

47

transforms ac via p into an condition Left(p, ac) over L such that, for each direct
transformation G⇒p,g,h H, we have g |= Left(p, ac) ⇐⇒ h |= ac.

L K R

DG H

g h(1) (2)

Left(p, ac) ac

=| |=

Construction. The construction Left is inductively defined as follows:

L K R

K ′L′ R′
a′ a(2) (1)

Left(p′, ac) ac

Left(p, trueP) = trueP ′ .
Left(p, ∃(a, ac)) = ∃(a′,Left(p′, ac))
if R′ ⇒p−1,a,a′ L

′ is a direct transformation by p−1
39

and p′ = 〈L′ ← K ′ → R′〉 is the rule derived of
L′ ⇒p,a′,a R

′ and false, otherwise.
Left(p,¬ac) = ¬Left(p, ac) and
Left(p,∧i∈Jaci) = ∧i∈JLeft(p, aci).

Proof. Immediate consequence of Theorem 6 in [9] using Fact 1. 2

Example 14. Consider the rule

〈
:PTArc:Pl

:PN

:Tr
←

:Pl

:PN

:Tr
→

:Pl

:PN

:Tr

〉
that removes a PTArc from the model. To save space, we leave out the role
names here. Consider now the graph constraint from Example 7 saying “there
is no isolated place” and the corresponding right application condition from
Example 13 above saying “the Place object is connected to a PTArc or TPArc”.
The Left construction yields the left application condition

∃
(

:PTArc:Pl

:PN

:Tr
→ :PTArc:Pl

:PN

:Tr

:PTArc

)

∨ ∃
(

:PTArc:Pl

:PN

:Tr
→ :PTArc:Pl

:PN

:Tr

:TPArc

)

stating that “there must be a second PTArc or a TPArc connected to the Place

object”. The complete construction is shown below.

39 For a rule p = 〈L← K → R〉, p−1 = 〈R← K → L〉 denotes the inverse rule of p.

48

:Pl

:PN

:Tr

:Pl

:PN

:Tr

:PTArc

:Pl

:PN

:Tr

:TPArc

:PTArc:Pl

:PN

:Tr

:PTArc:Pl

:PN

:Tr

:PTArc

:PTArc:Pl

:PN

:Tr

:TPArc

:Pl

:PN

:Tr

:Pl

:PN

:Tr

:PTArc

:Pl

:PN

:Tr

:TPArc

∃ ∃ ∃∃ ∃ ∃
∨

∨ ∨

Fig. 5. Illustration of the Left-construction

6 Related Work

In the literature, there are several approaches to translate OCL to formal frame-
works. Most of them are logic-oriented; they translate class models with OCL
invariants into logical facts and formulas. An overview on the significant logic-
oriented approaches is given in [8]. The advantage of the logic-oriented ap-
proaches is that there are a number of established theorem provers which can
be used.

In contrast to logic-oriented approaches, graph-based approaches translate OCL
constraints to graph patterns or graph constraints. Pennemann has shown in [27]
that a theorem prover for graph conditions works more efficient than theorem
provers for logical formulas being applied to graph conditions. The key idea is
here that graph axioms are always satisfied by default when using a theorem
prover for graph conditions. Lambers and Orejas [28] have shown that this the-
orem prover is also complete. Bergmann [10] has translated OCL constraints to
graph patterns. He considers a pretty similar subset of OCL than we do (ex-
cept of OCL expression not being first-order), and in fact, the way of translation
shows a lot of similarities. The focus of that work, however, is not a formal trans-
lation but an efficient implementation of constraint checking which is tested at
example constraints.

7 Conclusion

The contributions of this paper are the following:

(1) Introduction of a compact notion of graph conditions: lax conditions.

49

(2) Translation of Essential OCL invariants to nested graph constraints
(3) Correctness of the translation.

Translating Essential OCL invariants to nested graph constraints opens up a way
to construct application conditions of transformation rules ensuring consistency
already during transformations [9]. This missing link between meta-modeling and
transformation systems may be advantageously used by new applications such as
test model generation as well as recognition and auto-completion of model editing
operations. The backward translation of graph conditions to OCL may also be
interesting, e.g., to weakest pre-conditions in OCL as proposed in [29]. In future
work, we plan to implement the presented translation of OCL to application
conditions in the context of the Eclipse Modeling Framework and Henshin [30],
a model transformation environment based on graph transformation concepts,
and to apply it in various forms.

Acknowledgement. We are grateful to the anonymous referees for their helpful
comments on a draft version of this paper.

References

1. OMG: Object Constraint Language. http://www.omg.org/spec/OCL/

2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification
of UML/OCL Models using Constraint Programming. In: 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). (2007) 547–548

3. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and System Modeling 8(4) (2009) 479–500

4. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In Denney, E., Bultan, T., Zeller, A., eds.: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, IEEE (2013) 191–201

5. Bardohl, R., Minas, M., Schürr, A., Taentzer, G.: Application of Graph Transfor-
mation to Visual Languages. In: Handbook of Graph Grammars and Computing
by Graph Transformation. Volume 2. World Scientific (1999) 105–180

6. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:
Model Driven Engineering Languages and Systems - 15th Int. Conference, MOD-
ELS 2012, Proceedings. Volume 7590 of LNCS., Springer (2012) 415–431

7. Jackson, D.: Alloy Analyzer website (2012) http://alloy.mit.edu/.

8. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core OCL Invariants to
Nested Graph Constraints. In: Graph Transformations (ICGT 2014). Volume 8571
of LNCS. (2014) 97–112

9. Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. Math. Structures in Comp. Sci. 19 (2009) 245–296

10. Bergmann, G.: Translating OCL to Graph Patterns. In Dingel, J., Schulte, W.,
Ramos, I., Abraho, S., Insfran, E., eds.: Model-Driven Engineering Languages and
Systems (MoDELS). Volume 8767 of LNCS. Springer (2014) 670–686

11. OMG: Meta Object Facility. http://www.omg.org/spec/MOF/

50

http://www.omg.org/spec/OCL/
http://alloy.mit.edu/
http://www.omg.org/spec/MOF/

12. Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universität Bremen, Logos Verlag, Berlin (2002)

13. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In Ernst, E.,
ed.: Proceedings of the 21st European Conference on Object-Oriented Program-
ming (ECOOP’07). Volume 4609 of LNCS., Springer (2007) 600–624

14. Cabot, J., Gogolla, M.: Object constraint language (ocl): A definitive guide. In:
Int. School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2012. Volume 7320 of LNCS. (2012) 58–90

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental Theory of Typed At-
tributed Graph Transformation based on Adhesive HLR Categories. Fundamenta
Informaticae 74(1) (2006) 31–61

16. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer (1985)

17. Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of abstract data types. Wiley
(1996)

18. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. (2006)

19. Orejas, F.: Symbolic Graphs for Attributed Graph Constraints. J. Symb. Comput.
46(3) (2011) 294–315

20. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta-modelling
Aspects with Graph Transformation for Efficient Visual Language Definition and
Model Manipulation. In: FASE. Volume 2984 of LNCS. (2004)

21. Rensink, A.: Representing first-order logic by graphs. In: Graph Transformations
(ICGT’04). Volume 3256 of LNCS. (2004) 319–335

22. Habel, A., Pennemann, K.H.: Nested constraints and application conditions for
high-level structures. In: Formal Methods in Software and System Modeling. Vol-
ume 3393 of LNCS. (2005) 293–308

23. Poskitt, C.M., Plump, D.: Hoare-Style Verification of Graph Programs. Funda-
menta Informaticae 118(1-2) (2012) 135–175

24. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive Transforma-
tion Systems with Nested Application Conditions. Part 1: Parallelism, Concurrency
and Amalgamation. Math. Structures in Comp. Sci. 24(4) (2014)

25. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Graph-
Grammars and Their Application to Computer Science and Biology. Volume 73 of
LNCS. (1979) 1–69

26. Ehrig, H., Kreowski, H.J.: Pushout-properties: An analysis of gluing constructions
for graphs. Mathematische Nachrichten 91 (1979) 135–149

27. Pennemann, K.H.: Development of Correct Graph Transformation Systems. PhD
thesis, Universität Oldenburg (2009)

28. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Graph
Transformation (ICGT 2014). Volume 8571 of LNCS. (2014) 17–32

29. Richa, E., Borde, E., Pautet, L., Bordin, M., Ruiz, J.F.: Towards Testing Model
Transformation Chains Using Precondition Construction in Algebraic Graph
Transformation. In: AMT 2014–Analysis of Model Transformations Workshop
Proceedings. (2014) 34–43

30. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and tools for In-Place EMF Model Transformation. In: MoDELS 2010,
Oslo, Norway. Proceedings. Volume 6394 of LNCS., Springer (2010) 121–135

51

	 Translating Essential OCL Invariants to Nested Graph Constraints Focusing on Set Operations: Long Version

