Main Content

Publications Dr. Hamed Azarbad

[17] Conventional vs Organic agriculture– which one promotes better yields and microbial resilience in rapidly changing climates? Azarbad H (2022) Frontiers in Microbiology, 13:903500; https://doi.org/10.3389/fmicb.2022.903500
 
[16] The response of wheat and its microbiome to contemporary and historical water stress in a field experiment. Azarbad H, Bainard DL, Agoussar A, Tremblay J, Yergeau E (2022) ISME Communications, 2:62; https://doi.org/10.1038/s43705-022-00151-2
 
[15] Relative and quantitative rhizosphere microbiome profiling results in distinct abundance patterns. Azarbad H, Tremblay J, Bainard DL, Yergeau E (2022) Frontiers in Microbiology, 12:798023; https://doi.org/10.3389/fmicb.2021.798023
 
[14] A drying-rewetting cycle imposes more important shifts on soil microbial communities than does reduced precipitation. Wang XB, Azarbad H, Leclerc L, Dozois J, Mukula E, Yergeau É (2022) Msystems, 7(4):e00247–22; https://doi.org/10.1128/msystems.00247-22
 
[13] The resistance of the wheat microbial community to water stress is more influenced by plant compartment than reduced water availability. Agoussar A, Azarbad H, Tremblay J, Yergeau E (2021) FEMS microbiology ecology, 97, fiab149

[12] Soil water stress history and host genotype constrain the response of the wheat microbiome to decreasing soil moisture. Azarbad H, Tremblay J, Giard–Laliberté C, Bainard DL, Yergeau E (2020) FEMS Microbiology Ecology, 96, fiaa098

[11] Soil extracts with a water stress history modifies the rhizosphere fungal communities of wheat plants under a subsequent water stress. Giard–Laliberté C, Azarbad H, Tremblay J, Bainard DL, Yergeau E (2019) FEMS Microbiology Ecology, 1: 95(7)

[10] Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Azarbad H, Constant P, Giard–Laliberté C, Bainard DL, Yergeau E (2018) Soil Biology and Biochemistry, 126: 228–236

[9] Soil physicochemical and microbial drivers of boreal forest soils temperature sensitivity. Klimek B, Chodak M, Jaźwa M, Azarbad H, Niklińska M (2017) Pedosphere, doi:10.1016/S1002– 0160(17)60400–4

[8] Resilience of soil microbial communities to metals and additional stressors: DNA–based  approaches for assessing “Stress–on–Stress” responses. Azarbad H, van Gestel CAM, Niklińska M, Laskowski R, Röling WFM, van Straalen NM (2016) International Journal of Molecular Sciences, 17, 933

[7] Susceptibility to additional stressors in metal–tolerant soil microbial communities from two pollution gradients. Azarbad H, Laskowski R, van Gestel CAM, van Straalen NM, Nikiel K, Röling WFM, Niklińska M (2016) Applied Soil Ecology, 98: 233–242

[6] Functional and compositional responses in soil microbial communities from two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress? Azarbad H, Niklińska M, Nikiel K, van Straalen NM, Röling WFM (2015) Biology and Fertility of Soils, 51: 879–890

[5] Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forest stands. Chodak M, Klimek B, Azarbad H, Jaźwa M (2015) Pedobiologia, 58: 81–88

[4] Microbial community structure and functions are resilient to metal pollution along two forest soil gradients. Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CAM, Zhou J, He Z, Wen C, Röling WFM (2015) FEMS Microbiology Ecology, 91: 1–11

[3] Microbial community structure and functioning along metal pollution gradients. Azarbad H, Niklińska M, van Gestel CAM, van Straalen NM, Röling WFM, Laskowski R (2013) Environmental Toxicology and Chemistry, 32: 1992–2002

[2] Effect of long term exposure to different mixture of heavy metals on soil microbial index. Azarbad H, Niklinska M, van Straalen NM, van Gestel CAM (2012) Acta Environment, 20: 7–10

[1] Biosorption and bioaccumulation of heavy metals by Rock Oyster Saccostrea cucullata in the Persian Gulf. Azarbad H, Javanshir A, Mir–Vaghefi A, Daneh–Kar A, Shapoori M (2010) International Aquatic Research, 2: 39–44

31 January 2023