MDEAT - a new databionic evaluation and analysis tool to identify the virulence regulon of *Listeria monocytogenes* as a model system

T. Hain¹, A. Ultsch², S. Chatterjee¹, A. Amend¹ and T. Chakraborty¹

¹Institut für Med. Mikrobiologie, Justus-Liebig Universität, Frankfurter Str. 107, 35392 Giessen, Germany; ²Fachbereich Mathematik und Informatik, Arbeitsgruppe Datenbionik, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany

Background

The pathogenic bacterium *Listeria monocytogenes* is able to cross the endothelial, placental and blood-brain barrier causing gastritis, meningitis, neonatal death and other diseases in humans. PrfA (Positive regulatory factor A) is the sole regulator of the virulence genes identified in *Listeria monocytogenes* till date. It regulates genes within the virulence gene cluster (vgc), which harbors *prfA* itself, *plcA*, *hly*, *mpl*, *actA* and *plcB*. PrfA is also known to regulate cell-wall associated internalins (*inlA* and *inlB*), secreted internalins (*inlC*) and activates the transcription of genes involved in hexose phosphate uptake and bile salt hydrolases. We tried to identify additional PrfA regulated genes using a novel bioinformatic approach.

Bioinformatical approach

Throughout the last several years, the microarray technology has become widespread within the scientific community. Microarrays allow the analysis of changes in the expression profiles of several thousands genes in a parallel approach. Nevertheless, it is still not clear what number of experiments are sufficient to generate significant results from a minimal set of data. To overcome this problem, we have used a new bioinformatics tool called MDEAT (microarray databionic evaluation and analysis tool), which permits qualitative analysis of the results of a microarray experiment. If the quality is sufficient, only a small number of experiments to reach statistical significance have to be performed. If the quality is insufficient, more experiments have to be performed. The databionic-based approach has its roots in a theoretical background for the well known Pareto-80/20-law. Precise estimations of the distribution of the over- or under-expression of genes could be calculated, called Pareto Density Estimation (PDE). A picture of an experiment’s PDE gives a direct visual feedback of the experiment’s quality. Statistical measures for the quality of an experiment can also be derived from this PDE.

Microarray experiment

To evaluate the databionic approach, we selected whole genome microarrays of *Listeria monocytogenes* to investigate the expression profiling of the virulence regulon as a well-studied model system. For this purpose, we compared microarray experimental data collected according to a direct Cy dye labelling protocol with data collected according to an indirect Cy dye post labelling protocol. These results were analyzed comparatively for *Listeria monocytogenes* (wt) and *Listeria monocytogenes* complemented with *prfA* (wt+) versus the *prfA* deletion mutant (ΔprfA).

Results and Discussion

Several new PrfA regulated genes were discovered in this work using MDEAT. We identified an endo-1,4-beta-xylanase, a putative peptidoglycan-linked protein with a LPXTG motif and a cytosine desaminase as being positively regulated by PrfA, whereas genes involved in glutamine and glycine/betaine uptake as well two lipoproteins appear to be negatively-regulated. We confirmed the presence of PrfA binding sites for all of the positively regulated candidate genes, but not for any of the negatively regulated genes. These results suggest a more global regulatory role for PrfA, which can act both as an activator and/or repressor of genes.