Main Content

Protein-Protein Interactions (PPI) and Membrane protein trafficking (Renigunta)

Vijay Renigunta


In trying to understand the function of a protein, it is necessary to study its interaction with other proteins. Many large proteins are highly dynamic and intrinsically unstable macromolecules that have surfaces capable of interacting with other proteins. The folding and the stability of the protein can be enhanced by protein-protein interactions (PPI).

Voltage sensitive lipid phosphatases (VSPs) are signaling enzymes that interconvert phosphoinositide lipids in response to changes in the membrane potential. Given the multiple signaling roles of phosphoinositides, VSPs thus directly link cellular electrical signaling to intracellular pathways. However, their biological role has remained unexplained. We are interested in studying the role of these interacting proteins in controlling the intracellular traffic of the VSPs and the underlying molecular mechanisms.

We use an array of techniques available which include live cell imaging, Protein-protein interaction methods, membrane trafficking assays, gene expression analysis, state-of-the-art CRISPR/Cas9 genome editing.

If you are interested, please for further information.


Zou X, Conrad LJ, Koschinsky K, Schlichthörl G, Preisig-Müller R, Netz E, Krüger J, Daut J, Renigunta V (2020) The Phosphodiesterase Inhibitor IBMX Blocks the Potassium Channel THIK-1 from the Extracellular Side. Mol. Pharmacol. 98:143-55. doi: 10.1124/molpharm.120.000011.   

Dierich M, Altoè A, Koppelmann J, Evers S, Renigunta V, Schäfer MK, Naumann R, Verhulst S, Oliver D, Leitner MG (2020) Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K+ Current Entities. Cell Rep. 32:107869. doi: 10.1016/j.celrep.2020.107869                                                                                                                                                                                                

Hou J, Renigunta V, Nie M, Sunq A, Himmerkus N, Quintanova C, Bleich M, Renigunta A, Wolf MTF (2019) Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc. Natl. Acad. Sci. U.S.A. 116:19176-86. doi: 10.1073/pnas.1902042116

Gong Y*, Renigunta V*, Zhou Y, Sunq A, Wang J, Yang J, Renigunta A, Baker LA, Hou J (2015) Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization.  Mol. Biol. Cell. 26:4333-46. doi: 10.1091/mbc.E15-06-0422

Renigunta V*, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinné S, Decher N, Schlichthörl G, Daut J* (2014) Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol. Biol. Cell 25:1877-91. doi: 10.1091/mbc. E13-10-0592.

Renigunta V*, Zou X, Kling S, Schlichthörl G, Daut J* (2014) Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch. 466:1735-45. doi: 10.1007/s00424-013-1404-z.

Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J (2012) Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31:1999-2012. doi: 10.1038/emboj.2012.49.

Renigunta A, Mutig K, Rottermann K, Schlichthörl G, Preisig-Müller R, Daut J, Waldegger S, Renigunta V (2011) The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function. Cell. Physiol. Biochem. 28:663-72. doi: 10.1159/000335761.

Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S (2011) Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 286:2224-35. doi: 10.1074/jbc.M110.149880.                                                                                          

Decher N*, Renigunta V*, Zuzarte M, Soom M, Heinemann SH, Timothy KW, Keating MT, Daut J, Sanguinetti MC, Splawski I (2007) Impaired interaction between the slide helix and the C-terminus of Kir2.1: a novel mechanism of Andersen syndrome. Cardiovasc. Res. 75:748-57.