Direkt zum Inhalt
Bannergrafik (Fb 15)
Sie sind hier:» Universität » Chemie » Arbeitsgruppe Tallarek
  • Print this page
  • create PDF file


Bild 2013
Cover Feature
voronoi sphere packing

soft polymer

   Prof. Dr. Ulrich Tallarek

    Porous Media Morphology; Transport Phenomena; High-Performance Computing

    Full Professor - Materials & Interface Science

    Board of Directors - Materials Science Center

    Phone: +49-(0)6421-28-25727
    E-mail: ulrich.tallarek@staff.uni-marburg.de

   Biography   Publications


   Ms. Kirsten Bubenheim

    Phone: +49-(0)6421-28-27061
    Fax: +49-(0)6421-28-27065
    E-mail: kirsten.bubenheim@staff.uni-marburg.de


    Postal Address:

    Department of Chemistry, Philipps-Universität Marburg,

    Hans-Meerwein-Strasse, 35032 Marburg, Germany

Research Philosophy

Our research interests include the basic understanding of functional materials and analytical methods, from the mechanisms of analyte-surface interactions (sorption, reaction) to macroscale transport behavior. This approach relies on the discovery of the fundamental material morphology – surface functionality – mass/charge transport relationships. It requires complementary simulation methods to capture the widely different spatio-temporal scales involved in mass and charge transport (e.g., molecular dynamics simulations of solvent organization and analyte mobility in mesopores; lattice-Boltzmann method for simulation of fluid flow macroporous media; random-walk particle-tracking for the analysis of advective-diffusive transport; microscopic stochastic approach for analyte sorption/reaction at functionalized surfaces) as well as the precise physical reconstruction of porous media, e.g., with confocal laser scanning microscopy or electron microscopy. A variety of experimental analysis methods are used to complement the modeled data for morphological and functional optimization.

More specifically, our activities cover research on experimental, theoretical, and numerical aspects of the hierarchical transport in porous media and functional devices. The investigated materials are (i) functionalized channel networks and membranes used, e.g., in preconcentration units, reactors, or desalination devices, and (ii) particulate and monolithic supports employed in separation and catalysis. Our research investigates closely related topics and coupled transports with increasing complexity to achieve a thorough understanding of morphology, functionality, and macroscale transport. This comprises the reconstruction of monolithic and particulate bed morphology, the analysis of disorder of spatially random systems and its consequences for effective transport properties, the characterization of the involved surfaces and interfaces, consideration of (electro)chemical reactions, the transient and stationary dynamics of the fluid flow fields, as well as the resulting (electro)hydrodynamics. Experimental methods are combined with direct imaging techniques and advanced numerical simulation approaches for identification and analysis of key transport phenomena. The gained knowledge on how microscopic structural details and mesoscopic interrelations affect molecular transport allows us to better analyze, understand, and optimize processes traditionally observed on a macroscopic scale.

Key Words: Porous media; Transport phenomena; Materials, separation, and interface science; Quantitative morphology-transport relationships: disorder-diffusion-dispersion correlations; Reconstruction of porous media (monoliths, packed beds, membranes); Three-dimensional simulation of flow and coupled mass-charge transport; Lattice-Boltzmann method; High-performance computing; Slurry packing process; Bed morphology; Structure and dynamics of fluids in mesopores; Molecular dynamics simulations.


Research Overview


Zuletzt aktualisiert: 24.09.2015 · tallarek

Fb. 15 - Chemie

Fb. 15 - Chemie, Hans-Meerwein-Straße, D-35032 Marburg
Tel. +49 6421/28-25543, Fax +49 6421/28-28917 , E-Mail: dekanat@chemie.uni-marburg.de

URL dieser Seite: http://www.uni-marburg.de/fb15/ag-tallarek

Impressum | Datenschutz